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We establish conditions for the differentiability, to any order, of the Gibbs states 
of classical lattice systems with arbitrary compact single-spin space and with 
interactions in the Dobrushin uniqueness region. The derivatives are expressed 
as series expansions and are shown to be continuous on the uniqueness region. 
We also provide a procedure for estimating the size of the derivatives. These 
results verify a conjecture of L. Gross and extend his results in "Absence of 
second-order phase transitions in the Dobrushin uniqueness region," Journal of 
Statistical Physics 25(1):57-72 (1981). The techniques of this paper are based on 
those employed by Gross. 

KEY WORDS: Classical lattice spin systems; Dobrushin uniqueness theo- 
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1. I N T R O D U C T I O N  

1.1. Discussion of Results 

The purpose  of this pape r  is to invest igate  the extent  to which uniqueness  of 
the G i b b s  state of a la t t ice system implies  d i f ferent iabi l i ty  proper t ies  of the 
pressure.  In  this sect ion we discuss some of the ear l ier  results in that  
d i rec t ion  and  state our  m a i n  theorem.  In  the next  we establish b a c k g r o u n d  
and  nota t ion .  

In  1968, R. L. Dobrush in  (1) demons t r a t ed  the uniqueness  of G i b b s  
states for lat t ice mode l s  at  high tempera ture .  Specifically,  there is a Banach  
space ~ of in terac t ions  and  a n e i g h b o r h o o d  2 of the origin in this space,  
such tha t  to each in te rac t ion  in 2 there cor responds  a unique  G i b b s  state. 
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Both the single-spin space and the set of interactions for which Dobrushin's 
theorem holds are quite general: the spin space is compact metrizable but 
otherwise arbitrary, translational invariance is not assumed, and the interac- 
tions involved are many bodied and have long range [see Eqs. (1.13) and 
(1.14): ~ = ~2]. B. Simon has shown (2) that Dobrushin's theorem is, in a 
sense, quite strong: for any c > 0, there are interactions which are within a 

distance c of 2 and which possess multiple Gibbs states. 
The Dobrushin uniqueness region _~ is, in fact, an open neighborhood 

of the origin in ~ ,  as shown by L. Gross. (3) In the translationally invariant 
context, where the pressure P(~) may be defined, this leads immediately to 
a differentiability result. Namely, the pressure is "Gateaux differentiable in 

directions" at each interaction ~ in .~. By this we mean that for each 
in ~ and q~ in ~ ,  the function u ~ P(q + u~) : R 1 ~ R 1 is differentiable at 
u = 0, in which case we write 

d o+e(+) = e ( +  + u#,)l=:o 

The Gateaux derivative is also called the "functional" or "directional" 
derivative. Thus we assert that the pressure is differentiable in parameters 
occurring linearly in the interactions. This follows from the openness of 2 ,  
the convexity of P(q~), and the fact that every Gibbs state corresponding to 
an interaction may be represented by a "tangent functional" to the pressure 
at that interaction. See Ref. 4, p. 96 for details. 

The properties of convex functions lead, moreover, to the fact that the 
pressure is continuously Gateaux differentiable on _~, i.e., that the function 
r  3~P(r is, for fixed ~ E ~ ,  continuous on :~. If o+ is the unique Gibbs 
state corresponding to ~ in 2 ,  the derivative may be written 

o+e(+) = 

where A+ is an observable (i.e., a continuous function on the space of spin 
configurations) which is linearly associated with ~b [see (1.17)], and where 
a+(A~) is the expectation of Ar with respect to the probability measure a+. 

The main result of Gross in Ref. 3 is that the pressure is actually twice 
continuously Gateaux differentiable on ~ , '  in ~ directions. This obviates 
"second-order" phase transitions. He achieved this by showing that there is 
a dense subspace, C l, of observables such that the function ~ %(f )  is 
once continuously Gateaux differentiable on _~, for each f in C 1 (note: if 

~ ~ then A~ ~ C1; see Section 2.5). 
The main result of this paper (Theorem 5.1) extends that of Gross 

above as follows: We identify a decreasing sequence [~u ]  of interaction 
spaces (N t> 2, ~ = ~2) and a decreasing sequence [cN], N /> 1 of dense 
subspaces of observables such that, for each f E C s, the function 6 ~ o+(f) 
on -~n ~ s + l  is N-times continuously Gateaux differentiable (in g n + l  
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directions). The techniques used are based on those of Gross, who, in turn, 
extended the techniques used by Lanford ~4~ and Vasershtein ~5) in their 
proofs of Dobrushin's uniqueness theorem. 

We also provide series expansions for the derivatives (as in Ref. 3 for 
N = 1) as well as a procedure for estimating their size. These expansions 
seem to bear no resemblance to the customary series involving truncated 
correlations. As pointed out in Ref. 3, they may, however, be more useful 
for computations. However, H. Kfinsch ~6) has recently shown that the first 
derivative of the Gibbs state is in fact equal to the usual series of 
covariances. 

As a corollary to our main result, it follows that, in the translationally 
invariant context, the pressure is N-times continuously differentiable in 
~ N , N  >~2. 

We note here that the intersection of all the ~ u  spaces is still quite 
large. It contains, for example, all finite-range interactions. For a sufficient 
condition for interactions to lie in .~, see (l.18). 

There are a number of problems immediately related to our main 
result which remain undecided. Some of these ought to succumb to the 
methods we have used. Firstly, it remains to investigate whether the 
pressure is not N times continuously differentiable on 2 n ~x-1-  Secondly, 
we have not been able to establish the equality between the derivatives and 
the corresponding series of truncated correlations for arbitrary N. Thirdly, 
in Ref. 7 Gross demonstrated that the averaged two-point truncated corre- 
lations decay in the same weighted summability sense as the potential, 
when the latter lies in a suitable open subset of ~ .  (Improved estimates 
have recently been obtained by H. Kfinsch ~6~ and H. F611mer. ~8~) We 
conjecture that a similar result holds in -~n ~N,  N = 3,4 . . . . .  (For an 
extension of the main results of Ref. 7 in the direction of continuum 
systems see Ref. 9, which also provides an extension of Dobrushin's 
theorem to this situation.) Finally, we have not identified the exact domain 
of real analyticity of the pressure. 

A number of results on complex analyticity of the pressure are extant 
in the literature. Using Dobrushin uniqueness techniques, R. B. Israel ~1~ 
established complex analyticity, at high temperature, in any finite number 
of directions. The real part of his space of (complex) interactions is 
contained in the intersection of our ~N,  but from the point of view of 
range and many-bodiedness is still quite general. Results on analyticity not 
using Dobrushin techniques usually exert more stringent restrictions, for 
example, on the cardinality of the single-spin space. G. Gallavotti and S. 
Miracle-Sole ~ll) have demonstrated analyticity at high temperature (or 
low activity) for a wider class of potentials than ours (the space ~1 of 
"supersummable" interactions), though their single-spin space is restricted 
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to two points. Their techniques do not seem to admit generalization to 
infinite cardinality. Links between high-temperature correlation functions 
and analytieity have been explored by Duneau, Iagolnitzer, and Souil- 
lard (12-15) and Holley and Stroock. (16) 

1.2. The Mathematical Setting 

General references for this section are Refs. 17 and 18. 
Let L be a countably infinite set with some fixed enumeration (a i}. 

Let X be a compact metrizable space and associate with each a ~ L a copy 
X a of X. For any A c L, define a A = )< a~AXa and ~2 = ~2 L. ~A is the space 
of configurations inside A. We shall call a function in C(~2) that depends 
upon only finitely many coordinates a (continuous) cylinder function. Since 
fl is compact, the cylinder functions are dense in C(a). 

In all that follows, the notation "A c L"  will be taken to refer to a 
f ini te  subset of A of L. Also, we shall write "sp" for the (ap)th coordinate of 
s E ~2, and often write "j  ~ L," "A U j , "  etc. instead of aj E L,  A u { aj }, 
respectively. We shall sometimes speak of a cylinder function as being 
"based upon p"  if it is independent of all j th  coordinates with j > p. 

Let M = (l~j(dx[s)}jEL,s~a be a system of "conditional measures," 
i.e., 

(i) /~j(" I s) is a probability measure on X:, for each s ~ fL 
(ii) tzj(. Is) is independent of sj. 

(iii) For any continuous function g on Xj, f x ] ~ j ( d x l s  ) g ( x )  is in 
C(a). (The/~j will arise as single-site Gibbs ensembles.) Following Lanford, 
define the operators ~j on C(a) by 

KJ(s)  =- f x ~  j ( d x l s )  f ( x v  8) (1.1) 

where 2 = s[ L- j  and x v ~ is the configuration obtained from s by replacing 
itsjth component with x. That ~ f  is a continuous function follows from (iii) 
above and (ii) shows that it is independent of sj. It is a contraction (i,e., 
]~jfl~ ~< [f[~, where [. [~ is the supremum norm) since/~j(. Is)is a probabil- 
ity measure. 

For k < p < oe define 

rk , f f  = ~k " fk+ l " " " ~pf (1.2) 

As a product of contractions, Tk, e is a contraction itself. But note that the 
function Tk,pf(S ) is, in general, only independent of s k . The function fpf, for 
example, is independent of sp, but applying fp_ 1 to it introduces a depen- 
dence on sp by virtue of the dependence of/~p_ 1(" I s) on sp. 

Consider the sequence { Tl,pf}e~= 1 , for fixed f E C(~2). If f is a cylinder 
function based on q, then it is clear from (1.1) that ~j f=  f whenever j > q. 



High-Temperature Differentiability of Lattice Gibbs States 173 

Thus the sequence (Tl,pf) becomes stationary as soon as p > q (in which 
case T,r Tl,qf ) and we may define Tf= limp~o~Tk, f [where the limit is 
in the uniform, or C(f]), norm]. Since the T1, p are uniformly bounded and 
the cylinder functions are dense in C(~2), it follows that the limit Tf exists 
for all f E C(a). The same arguments hold for (Tk,ff}p~=l, in which 
instance we write Tk,~ f = L i m p ~  Tk,pf. 

Define, for k ~ L, 

Rk,  j = �89 - -  [ t j ( "  [ t ) l [ :  S ----- t off k} (1.3) 

where the norm is that of total variation. Let 

a I = sup ~ Rk, j (1.4) 
j k 

We are now in a position to state the following: 

Dobrushin 's  Uniqueness Theorem.  If  a] < 1, there is at most one 

probability measure o on the configuration space f~ such that a(~jf) = a(f) 
for all j ~ L and f ~ C(~2). 

For a proof, see Corollary 3.3 of Ref. 7. Vasershtein's method of 
proof (5) gives us a neat formula for constructing the Gibbs state, namely, if 
o is a measure as above, 

a(f) = lim T% f E C(~2) (1.5) 
n - - )  o0 

That is, T'f(s) tends, uniformly in s, to the constant o(f). 
Crucial to the method of proof is the identification of a dense subset 

C l of functions on which (1.5) is first established. This space is defined as 
follows: 

For e a c h j  ~ L a n d f  ~ C(f~), define 

Dj(f) = suP{If(s) - f(t)[  :s  = t off j )  
(1.6) 

]fll = ~ Dj(f) 
J 

Then C 1 = ( f  E C(~2) : ]f[l < m}. Every cylinder function is contained in 
C 1, so that C 1 is dense in C(~2). The proof of Dobrushin's theorem we use 
relies on the fact that for a 1 < 1, IT'fll << all f[ 1. 

In statistical mechanics we define the system of conditional measures 
by means of an interaction. This is a continuous function q~ on ~JAcL~A 
(again, the A are finite) whose value on ~h represents the many-body 
interaction energy between the spins located in A. The many-body energy 
is denoted 0 ( s lA  ) (for a configuration s in ~) and we require that 
0(~ IO) = 0. 

Thus the energy of any configuration inside I" c L is given by Ur(s)  
= ~Acrg,(s I A). Evidently the contribution of any single s i tej  in the lattice 
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to the total interaction energy of some configuration s in a is given by 

- k~,j(s) = Y, ~(s I A) (1.7) 
A c L  
j E A  

(assuming the series converges). We require that 

[l@lll= sup ~] sup l r  ~ (1.8) 
j ~ L  A c L s ~  

j~A 
SO that kc, j(s) is finite and, by uniform convergence, is a continuous 
function on ~. Let I, be some bounded real Borel measure (the "a  priori 
single-spin" measure) and define the single-spin Gibbs ensemble at j (with 
"boundary conditions" g = SIt_j) by 

~' (dx l s  ) = Z•(s)-lexp[ k~,,j(x v g)]l ,(dx) (1.9) 

where Zj~(s) is the normalization. It is easily checked that M = (/~f) is a 
system of conditional measures. In this case we write ~j* in place of ~, T~,~, e 
for T~,p and al(q~ ) for a 1. 

We proceed now to define Gibbs states corresponding to 0. Put 

W~(s) = Y~ O(sl v ) (1.10) 
F c L  

FnA=/-O 

(we have [WAOI < IAI I1r where IAI is the cardinality of A). WA(S ) is to be 
interpreted as the energy of the configuration SlA inside A, plus the energy 
of interaction between SlA and the "boundary" spins s I L-A outside A. Write 

~ f ( s )  = ZA(S)-I ( t,A(dx)e-W~(xvs')f(Xv~ ) (1.11) 
,)~2 A 

where now g =  S[L= A and uA= (~)Al," A Gibbs state corresponding to q~ 
with I[~l]l < oo is any probability measure o on f] satisfying 

O(~Af) = o ( f )  for all A c L, f E C(f~) (1.12) 

That is, the Gibbs ensemble ~ is just the conditional expectation corre- 
sponding to o, given the configuration of spins outside A. If we think of the 
~'A as probability measures on C(~A), then it is easily seen by a compact- 
ness argument that the set of weak limits of these measures as At"L is 
nonempty and consists of Gibbs states. Dobrushin's theorem asserts that if 
a~(0) < 1 there exists a unique Gibbs state. 

Following Gross we now define the spaces ~ u  alluded to in Section 
1.1. For any integer N and interaction q,, put 

Ilq, llN= ~ IAI N 'suPl,#(slA)[ (1.13) 
A c L  s@~ 
j ~ A  
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and define 

~N = ( ~  : ]lq~][N < ~ )  and 5~ = {4' ~ P:  : al(0) < 1) (1.14) 

(we choose ~2  rather than ~1 because .~  is not open in ~1). If L -- Z d, the 
corresponding spaces of translationally covariant interactions are denoted 
by ~N" Each ~N is a separable Banach space. 

An aside: It is possible to define the pressure on ~0.  However this 
space is quite pathological from a physical viewpoint. For example, M. E. 
Fisher constructed in Ref. 19 models whose interactions lie in ~0  and 
whose pressure is discontinuous as a function of density, implied by linear 
segments on the P - / z  isotherms. This phenomenon has never been ob- 
served in the laboratory and it is known (2~ that such a lack of strict 
convexity cannot obtain in @1 (and therefore in ~ N ,  N > 1). In Fisher's 
example two physically distinct interactions share the same Gibbs state. 
Indeed, in Ref. 22 Israel found that there exists a dense set of interactions 
in ~0,  each of which has uncountably many Gibbs states. We shall not 
dwell upon ~0  any further. 

Let us now define the pressure on ~1 with L = Z a. With W~ as in 
(1.10), put for each s ~ f~ 

l logfaAVA(dx)exp[ "~ , = - W ~ ( x  v s) ]  (1.15) FA(*)(s) 

The "thermodynamic limit" of PA(qO(s) as A approaches Z d through a 
sequence of sets (with suitably tame surfaces) exists uniformly in, and 
independent of, the boundary conditions s. This limit is the pressure P(q,). 
The Pa and P are convex, continuous functions on ~ l  (and therefore on 
~ N ,  N f> 1). In fact, they are Lip 1 functions: 

IN(C) - e ( * ' ) l  < I1r - r < II~0 - ~ ' [ I N ,  N /> 1 ( 1 . 1 6 )  

In Section 1.1 we alluded to the fact that a unique Gibbs state a 
corresponding to the interaction ~ is representable as a tangent functional 
to the pressure. By this we mean that, with 0 the origin of Z d, 

P(~  + qJ) >1 P ( , )  + o(A~), where A+(s) = - ~, IAl-l~P(sla) 
A : O@A 

(1.17) 

A sufficient condition for e~ to be in _~ was given by B. Simon in Ref. 2 
namely, 

sup ~ ( [A[ -  1)q~(. [A)[oo< 1 (1.18) 
j A : j @ A  

For example, if X = S n- ~, the unit sphere in R n, and q~ is a purely pair 
interaction, with q~(s] (a, b } ) =  --J~,bSaSb (SO that we have the "n-vector" 
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model) and ~b[J0,b[ < 1, there is a unique Gibbs state and the pressure is 
infinitely differentiable. In general, interactions in ~ l  satisfying (1.18) but 
having vanishing M-body interactions for all M larger than some number 
will be in -~n ~N for all N and therefore possess infinitely differentiable 
Gibbs states. 

We proceed now to informally differentiate the Vasershtein equation 
(1.5) for the Gibbs state expectation. We write 

0+r,f= 
(1.19) 

d (OCT),+~,f]~=o O ,,,r r , f  = -d-flu 

and so on. Since 

we have 

r o + o d -  r ; j =  r" - rolr:- 
k = l  

(1.20) 

n 

= �9 . r ;  7 (1 .21)  

Brazenly performing this limit and using (1.5) again, 

k = ,  

This formula was rigorously established by Gross (3) under the conditions 
that ~ ~ ~ ,  • E ~2 and f E C i. He also pointed out that it can be written 
in the form 

~ % ( f )  = %(~+T~. ( 1 -  T~)-I[ f ] )  (1.23) 

Here If] is the equivalence class { f +  e :c  a constant function). The C 1 
seminorm defined in (1.6) has as its kernel the constant functions. Thus 
~1 = (C 1/constants) is a Banach space; since I -  T, annihilates constants 
it may be interpreted as an operator on ~1, with inverse given by 

S , [ f ]  -- ( I -  T , ) - ' [ f ]  = ~ [ T 2 - 7 ]  (1.24) 
k = l  

Similarly, 0~ T, acting on C 1 annihilates constants; Gross showed that 0 r 7", 
takes C l into C(f~) and so may be interpreted as an operator from d I to 
C(a). 

Space limitations prevent us from providing the heuristics for establish- 
ing higher derivatives [though it is clear how to proceed informally--see 
(5.2) below]. Heuristics are given in Ref. 23, Section 1.3. Here we note that 
we need to identify the spaces ~N and C N (of interactions and functions, 
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respectively) on which the informal expressions for the Nth derivative are 
well defined and converge. If the topologies of C N are defined by means of 
seminorms, as for C ~, then we at least want seminorms for which the 
operators ~., T,  etc. are bounded. We follow this clue in the next section, 
where we define C N seminorms in terms of "Nth-order  oscillations" by 
analogy to the definition of the C t seminorm in terms of "first-order" 
oscillations. In Section 3 we show that the operators T ,  are bounded on C N 

for ~ in ~ n  ~ u + l .  In Section 4 we study the derivatives of the ~j*f and 
establish their boundedness on C N and continuity in q~. In the final section 
we state and prove the main theorem, giving estimates of the first two 
derivatives of the Gibbs state. 

Space limitations also prevent us from giving detailed proofs in the 
first four sections, though we have tried to indicate the main ideas. This 
paper is a condensation of Ref. 23, where details may be found. 

2. THE SPACES C u AND THE BOUNDEDNESS OF THE ~j~ ON C N 

2.1. Nth-Order Differences 

For A c L put 

a~ = ( ( s , 0  ~ ~ 2 : s  = t off A) (2.1) 

(the topology of ~ is given by its natural association to ~2 A • f~A • f~L-A)" 
For any A C L and (s, t) ~ f~ ,  consider the set 

~2 (s, t) = (w ~ f~: w i = either s i or t i ,  i E L )  (2.2) 

Then ~(s ,  t) is the set of at most 2 IAI configurations in f~ which may be 
constructed from the pair (s, t) by changing some components of s into 
those of t. We may symbolize this process as follows: For w E ~(s ,  t) and 
F c A, let w r ~ ~ be given by 

I t i if i E F  and w i = s i 

(Wr)i= s i if i E F  and w i =  t i .  (2.3) 

[ w  i if i ~ F  

Then w r is also in ~(s ,  t) and is obtained from w by "switching" the 
appropriate components of w. Note that if w E ~ ( s ,  t),  then w = Jr  for 
some F c A. It is evident that if (s, t ) E  f~ ,  then for any u ~ ~(s ,  t) we 
have (u, UA) E f ~  and moreover that ~(s ,  t) = ~(u ,  UA). 

Let F :  ~2---> Y, where Y is an additive Abelian group (pertinent exam- 
ples are Y = real line or Y = finite signed measures, on some Xj, indexed 
by f~, such as ~ ( d x l s  ) of Section 1). Given A c L, define the (]A]th-order) 
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difference of F on A, denoted F A, by 

F A :~'A---> Y :  FA(s , t )  = ~,  ( -1 ) [ r [F(s r )  (2.4) 
] ? c A  

where s r is to be interpreted with reference to (s, t) as above. Note that 
F'~(s) = F(s).  

Differences up to second order are as follows: let a,b ~ L, u ~ f~L-a, 
v E f~L-~a,b/" Then 

r ~ : ~ --> Y : F ' ( s )  = F(s )  

F(")  :f~a} ~ Y : r (a ) (SavU,  t ,v  u) = r (SavU)  - F ( t ~ v u )  
(2.5) 

F ~a,b~ : ~2~,b ~ -~ Y : F~'b~(sav Sbv v, t~v tb~ V) 

= F(sa~ ~ v  v) - F( tav  ~ v) - F ( r  t ~  v) + F(to~ tb~ '~) 

Various properties of these differences appear in Section 2.3. We note here 
that the concept is really one of "differences of differences" and accord- 
ingly we may generalize (2.4) as follows. 

Suppose that T c L and G : ~ - 9  Y, Y an additive Abelian group. For 
any A C L - T, define the difference of G on A as 

GA :a'AU~---> Y : GA(S't) = E (-- 1)lrlG(sr,S(ruw)) (2.6) 
F c A  

2.2. Definition of the Seminorms DA, I ' IN 
Let A c L and F ~ C(~). Put 

DA(F  ) = sup IFA( �9 )l (2.7) 

Ir lu  = ~ DA(F  ) (2.8) 
A c L  
IAl=2V 

We shall call ]. IN the Nth seminorm. 
More generally, suppose that G : f~  ~ Y and A c L - T. Put 

Da(G ) = sup 161'(-)1 (2.9) 
~ku~ 

Of interest to us is when G = F r, F ~ C(f~), in which instance DA(F T) 
= DAur(F ) (see Section 2.4). 

2.3. Properties of Nth Order Differences 

We will consider only functions F:~--> Y, as in (2.4). Extensions to 
the situation of (2.6) are trivial. 

Fix A c L and (s, t) ~ f~ .  We have the following: 
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(a) For F, F' c A and w E ~(s ,  t), 

(Wr)r,= Wrar,, where r a t ' =  ( r -  r') u ( r ' -  r) (2.10) 

We have seen in Section 2.1 that to w E Y,(s, t) there corresponds (b) 
a F c A such that w = s r. Also, (w, WA) ~ f~ .  We have, in that case 

gA(w, WA) = (-- 1)lrIFa(s, t) (2.1 1) 

(c) Let T c L -  A. Then 

F TUA= (FT) A (2.12) 

as in (2.6) with G = F T. This is a recursion formula for the differences. In 
particular, suppose a ~ A. Let x = s,, y = t~, ~ = sir_ ~ and t"= tlL_ a. 
Then 

Fa(s,t)  = FA(Xvg, Yv ?) = F A - ~ ( x v ~ , x v  ;) -- F i - a ( y v ~ , Y v  ;) 

(2.13) 

(d) If s i = t i for some i ~ A, Fa(s, t) = O. 
(e) If F(s) is independent of sj, F A ~ 0 wheneverj  E A. 

2.4. Remarks on the Seminorms D A, J" IN 
(a) If F ~ C(~2), (2.4) shows that Da(F  ) < 21AIIFI~ < co. This and 

the linearity of F ~  F A show that the D A are indeed seminorms on C(s 
(b) Suppose j ~ A, F ~ C(~2) and there is a function ~ on ~2~ such 

that ~(s, t) does not depend upon sj = ~ and such that it has the following 
property: for each (s, t) E s with ~ = slL_ j and t = tlr_ j, 

inf F h ( x v ~ , X v ? )  <<. ~(s,t) -<< sup FA (xv.C, xv  ?) (2.14) 
x e ~  x~xj 

Then 

For, 

sup[ F A -  ~l ~< DAuj(F)  (2.15) 
aX 

IFA(s,t) -- r < sup F A ( x v ~ , x v  ;) -- inf FA(xvg,  Xv ?) 
x~xj x~Xj 

< sup ]F/ ' (Xv~,Xv ; ) - F h ( y v ~ , y v ; ) l  
x,y  C Xj 

< OAuj(F  ) (2.16) 

where we have used (2.13). 
(c) If F(s) is independent of sj and j E A, Property 2.3(e) shows that 

Da(F) = O. In consequence, if F is a continuous cylinder function, ]F]M 
< c o  for a l l M = l , 2  . . . . .  
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(d) Let s, t E f~ and F ~ C(f~). If we change the coordinates of s into 
those of t one at a time, we see that IF(s)  - F(t)[ < ]Fll. Thus the subset of 
C(f~) on which the "seminorm" I" I1 vanishes consists exactly of the 
constant functions. 

2.5. Definition of the Spaces cN; Their Connection with 
Spaces of Physical Interactions 

For each natural number N we define C ~ to be the topological vector 
space consisting of those f ~ C(~) with [f[M < 00, 1 < M < N, and with 
topology defined by this collection of seminorms. 

I am indebted to John Reid of U.C.I. for pointing out to me the 
following: 

Lemma. If f E C(f]), there exists a sequence (.fn) of cylinder func- 
tions converging to f uniformly and such that DA(fn ) < DA(f) for all A c L 
and all n. 

This may be seen as follows. Let { g,} be a sequence of cylinder 
functions tending to f uniformly and let A n be finite subsets of L such that 
gn depends only on coordinates in A,, for all n. For s ~ f~, let s, = s ] An and 
let 6 ~ f~L-A, be any choice of configurations. Then fn(s )  = f ( s  n V 6 )  are 
the required cylinder functions. It follows from this lemma that 

C s = I f  ~ C(a)  : lflM < oo, 1 < M < N, and there exists a sequence 

( fn } of cylinder functions such that I f -  f.l M ~ 0, 

1 < M < N and I f -  f.[~->0] (2.17) 

As we have seen in Section 1, the functions in C(12) tha twe expect to 
arise out of successive differentiations of the pressure P(q,) are of the 
following two kinds, namely, 

a + ( s ) = -  E I r l - '+(s l  r )  (2.18) 
F : j ~ F  

and 

k+(s) = - E +(s I t )  (2.19) 
I ~ : j E F  

for some j E L. By a standard computation employing Property 2.3(e) it 
may be shown that 

2 N 
]K+IN < 2N E (INFI)kb(" [F)[• ~< ~ .  [Iqq[N+l (2.20) 

F E j  

and similarly that 

2N (2.21) IAq~[N <~ ~ HqqIN 
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Thus we have that, for each nonnegative integer N, e o ~ k , : ~ N + ~  ~ C N 

and , ~  A , : ~ N  ~ C u. Moreover, these maps are surjective for N = 0. (~8~ 

2.6. Definition of RA, j and 0~ N 

AS in Section 1, define the probability measures 

exp k~,(x v ~) 
t~fl(dxls ) = vj(dx) Z(s)  , x ~ Xj (2.22) 

for eachj  E L and s E ~2. If F(s) = ~*(dxls  ), write 
A 

( I~j ) (dxl s, t) = FA(s, t), A C L 

Define 
,) A 

RA,j(,) = �89 j ) (dxls, t)lltotalvariatio n :(s,t) ~ }  (2.23) 

Note that RA, j = 0 i f j  E A. Also, put 

aN(,) = sup ~ RA,j(*)  , N =  1 ,2 , . . .  (2.24) 
j A c L  

IAI=N 
It will be seen in Section 4.2 that the aN(') are finite and in fact continuous 
on  ~N+I. 

We next present the fundamental estimate needed to show that T~ is 
bounded on C u. This generalizes the basic inequality of Lanford, (4~ who 
found that D~ (for) = 0 and 

Do(U)  <<. D~(f)  + R~,jDj(f), a --/=j (2.25) 

2.7. Theorem Estimating DA(~j'~f) 
Let f ~ C(f~), j E L, and A c L. Then 

0, j ~ A  

Da(~J*f) < Da( f )  + ~] Rrj(*)D(A-r)uj ( f ) ,  j ~ A (2.26) 
F c A  
r ~ O  

(If A = O, we interpret the sum over F in the right-hand side to be 0.) 
For the proof, the essential step is to establish, by induction on [AI, the 

following identity (where we suppress the symbols j and ,):  

2*A,(Uj)A(.,,) = FcAE r A(- [dx I st'' 

• fA-r (xv~r , ,Xv(~r , )A_r  ), (s,t) ~ f ~ X a n d j ~ A  (2.27) 
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Here #r is, as in Section 2.6, a finite signed measure on Xj. The notation 
x v st' for (xv S)r' should cause no confusion as x E Xj and j ~ A. The 
estimate (2.26) is then arrived at in this way: for each I' 4 : 0  appearing in 
(2.27), set 

~(s,t) = �89 ( sup f A - r [  Xv ~r,, (Xv ,~r,)A_r] 

+ inxf fA-r[xv~r,,(Xv~r,)A_r] } (2.28) 

Then we have 

f ~r(dxlsr', ") f A - r ( x v  ~r', ") : f ; ( d x  i. . . ,  .) { i A - ' ( x .  .) - 

< II I ~ r ( d x l s r  , , ")lltot. vat 
(2.29) 

�89 fA-F . s u p f  (xv Sr,, ") - inf f A - r ( x v  ~r , ")] < Rr,j(~)D(A_r)uj(f) 
L 

where we have used the fact that t~ r has total mass zero, (2.23), and (2.12). 
In case F = O, the corresponding term yields 

f "(dxlsF')fA(xv'r'' ") <<'supifA(xvsr"x ")]< DA(f) (2.30) 

Finally, we note that there are 2 LAI different F ' c  A, each of which 
yields the same size estimate. When we take absolute values on both sides 
of (2.27) and a supremum over (s, t), the factor 2 IAI therefore cancels and 
we will have proved the theorem. 

3. THE BOUNDEDNESS OF T, ON CN; VASERSHTEIN MATRICES 

The purpose of this section is to demonstrate that T~, as defined in 
Section 1, is a bounded linear operator on C x, N = 0, 1, 2 , . . . ,  whenever 
the interaction ck is restricted to a suitable neighborhood ~ u  of the origin 
in Ps+l-  In Section 5.3 we will show that ~--) TJ:-f~N ---> C u is continu- 
ous. The proof of this rests on the arguments of Section 4. We first identify 
-~N and then state the main theorem. 

3.1. The Dobrushin Uniqueness Regions 

For N a natural number, let 

~ N  = [ ,  ~ J'N+, : ~ , ( , )  < 1] (3.1) 
We call ~ N  the Nth Dobrushin uniqueness region. We will see in Section 
4.2 that, on ~N+1, aM('), 1 < M < N are finite (and in fact continuous). In 
this section we shall assume this as an added condition in the definition of 
"~N above. 
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3.2. Theorem Bounding the T~,,k,e 

For q~ E -~N, N = 1,2 . . . . .  the operators T~,k, p (1 < k < ~ ,  k < p 
< ~) ,  already defined in C(f0, are bounded linear operators on C N. For 

f E C u and ~ E 5~N, we have (when k < p), 

IT~,k,pfl < pk,e(~0)lfl + [1 - O~1(1~9)] - 1  

X Gz~  ~ { G + [ 1 - a l ( e p ) ] - l J G } ' [ J l f l +  EP( f ) ]  (3.2) 

where Ifl is the N • 1 column matrix [IflM] 

=[a l ( eP ) '  if k = l  and p =  
Pk,p(~) (3.3) 

t 1, if k > l  or p < c e  

where the N X N matrices G, J are defined by 

Gml= [ Olm_l+,(~)), 1 < l< m-- 1 (3.4) 
' ( O, l > ~ m  

JmJ = rnS,~,l (Kronecker 6 ) (3.5) 

and where Ee( f )  is the N • 1 matrix whose Mth entry is 

f~ 
, p = oo 

E~t(f) = 1 - a~(9~)] ~,, D r u p ( f )  , p < ~ (3.6) 
F ~ p  

Irt = M -  ] 

When k ---p, we have 

N 

IZp/lN = I~Jlu < I fiN +[1-  cq(qo)]-a ~ aN_j+lEf ( f )  
j = l  

(3.7) 

3.3. Remarks on Theorem 3.2 

(a) The estimate in (3.2) for I T ~ , j I N  involves the Nth seminorms of 
f only in the first term of the right-hand side, the matrix G being zero on 
and above its diagonal. 

(b) The instance N = 1 was proved by L. Vasershtein. (5) 
(c) We present estimate (3.2) for N --- 1, 2, and 3. Set 

Yn(~)  - I - a l ( q ,  ) ' n = 1 ,2  . . . .  ( 3 . 8 )  
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Then, suppressing % 

I Tk,pfll < Pk,/fll (3.9a) 

[Tk,efl2 < 0k,/fl2 + r2[lfll + E f ( f ) ]  (3:9b) 

2 
+ (T2E2P + [72a2(1 + 1 - a l  ) + 73]E1~ (3.9c) 

3.4. Definition of Vasershtein Matrices 

Define 

and 

For A, F c L, let 

and let 

V N = ( A c L , [ A I = N } ,  N = 0 , 1 , 2  . . . .  

N 

UN= U V  . ,  N = l , 2  . . . .  
n = l  

(3.10) 

Vo = ( , )  = Vo 

1 if r c A  
XA,r = 0 otherwise 

(3.1t) 

1 if  F = A 
8A'r = 0 otherwise 

(3.12) 

In what follows we shall assume that ~) is a fixed interaction (in ~1,  at 
least) and will not explicitly mention it in our formulas. 

For fixed N /> 0 and A, F E V N, put 

(k) / 8A'r' if k ~ r 
A A ' r =  ~ RA_(r_k),kXA,r_k, if k E F 

(3.13) 

and for A E VN, F E U N-1, put 

(k) ( 0, if k ~ F 
dZ{A,I'= t RA_(F_k),kXA,r_k, if k ~ F 

(3.14) 

(k) 
[of course, dA,  r is defined by the right-hand side of (3.13) also]. Note that 

(k) 
i f A ~ V  1, agA, r - - 0 .  

The A (k),ar (k) are here entitled "Vasershtein matrices" after L. Va- 
sershtein, who studied them in the instance N = 1. (5) 



High-Temperature DifferenUability of Lattice Gibbs States 185 

3.5. Recasting Theorem 2.7 

We may rewrite (2.26) in terms of Vasershtein matrices as follows: let 
A E V N. Then 

(k) (k) 
Da(~d)  < E A a,rDr(f)  + E d i , r D r ( f ) ,  N /> 1 (3.15) 

FEVN F@UN_! 

To see this, consider (2.26) (with j---) k). Note that 

Rr,AD(A-r)vk = ~,  RA-r,,kDr, uk = ~ RA-(r-k) ,kDr 
F c A  F ' c A  F : k ~ F  
r ~ r  r '~A r - k c a  

lrl < N 

where we have successively set F'  = A - Y and Y -- Y' U k. Thus, employ- 
ing (3.10) and (3.11), (2.26) translates to 

I 
O, k E A  

DA(~kf) < DA( / )  + E RA-(r-k) ,kXA,r-kDr(f) ,  k ~ A (3.16) 
F~UN 
kEF 

Now since UN is the disjoint union of V N and U N_ 1, we see from the 
definitions (3.13) and (3.14) that (3.15) holds. 

3.6. Products of the Matrices 

Consider the following sum of nonnegative terms; for A,F  ~ VN, 
k = l , 2  . . . . .  a n d n = 0 , 1 , 2  . . . .  : 

(k) (k+]) (k+n) 
Bk,k+, �9 �9 �9 A (3.17) a,r = ~ " ' "  ~ AA,A, A a,,a~ A.,r 

AI@VN An@VN 

Doing the sum in the order AI, A2 . . . . .  A n, we see that the sum is actually 
(k) 

a finite one of at most (N + 1) n terms (A A,A,, for example, stands a chance 
of being nonzero only if A ~ k and either A 1 = A or A 1 = ( A - J ) u  k for 
some j E A). 

(k + n) 
If we have k + n ~ F, then by definition A a,,r = 6&,r. Summing 

over the Aj from right to left ( j  decreasing) for those j with k + j ~ F, we 
have 

Bk,k+, __ f6A,r, r n [ k , k  + n ] = 0  
(3.18) 

A,F -- IBk'max(rn[k'k+n]} Fc~ [ k , k  + n] ~f f l  
L A,r 

where [k,k  + n] = ( k , k  + 1 . . . . .  k + n} and m a x A  = m a x { j  : j  E A). 
Now fix k, A, F and allow n to increase indefinitely. As soon as 

n > max F, the sequence nk,k+, becomes constant and therefore has a limit ~'A,F 
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k , ~ .  BA,r �9 

Certain 

BAk:~ = ,-~lim B~'~,, = { ~A,F//aA'F'k'max F, maxmaX rr </> kk 

BAk:ff = Bkjr . for any j >t max F 

summability estimates for these matrices were 

(3.19) 

(3.20) 

studied by 
Vasershtein and Gross (7) when N = 1. We will need similar estimates for 
N >/ 1. The next lemma enables us to reduce the estimations for N > 1 to 
those of Ref. 7. 

3.7. Lemma 

(a) Let A and F be in V N for some N t> 1 and let ~r A, 9r r be the sets of 
ordered arrangements of A, F, respectively. We write the components of 
b ~ r  A a s b  i, 1 < i ~ < N .  T h e n w e h a v e  

N N N 
1 k,p= 

Bk:~<~--~.~ E E I'[Bb,,c, E IIBd;w = E I-IB~:e,c, (3.21) 
bETr A c C e r  r i = l  bE~r  A i ~ l  c ~ r  r i = l  

where ~ and ~ are any fixed elements of ~r A, ~r r, respectively. 
(b) If max A < p < max F, B~:~ = 0. 
The proof of part (a) rests on induction in p. Part (b) is a corollary to 

part (a) and the corresponding property for N = 1. 

3.8. Lemma: Summability of the Matrices 

(a) Let N >/ l, k E [ 1 , ~ )  and p E [ k , ~ ] .  
FerN, 

and 

(b) 
with k ~ F, we have 

If a l <  1, then for all 

BA~:~ < a] (3.22) 
A~VN 

E BI:~<~ 1 (3.23) 
A~VN 

p - 1  N 
~ n k + l g < . < _ _  (3.24) 

k = l  A ~ V N _ j  u A U k ' F  1 - -  0t 1 

k ~ A  

Let N /> 2 and j E [ 1, N - 1 ]. For each k E L and each F ~ Vj_ 1 

(k) 
dA,r~k < aN-j+ l (3.25) 

A E V  N 
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The proof of (3.22) is along the same fines as that in Gross [Ref. 7, 
Eq. (3.11)]. (3.23) follows by the same argument and (3.24) relies on Lemma 
3.7 above and on equation (3.12) of Ref. 7 for its proof. Part (b) is a direct 
consequence of the definition (3.14) of ~ .  

The next lemma iterates the basic inequality (3.15) a finite number of 
times. 

3.9. Lemma 

For k E [1, oo),p E [k, oo), N >i I, A ~ V N a n d f  E C(s we have 

Da(Tkcf) < E Bki~Dr(f) 
F~  VN 

p- - I  

n = k - 1  F ~ V N  T~'(n + 1) 
Tu(n+ 1)E Ulv-i 

(3.26) 

where we make the conventions that uA, rl~k'k-1 = 8At, and Tp+l,pf= f. In case 
N -- 1, the second sum is considered empty and we have 

Di(rkcf) < ~ B,KcDj(f) (3.27) 
j=l 

In order to extend this result to the casep = oo, as well as to estimate 
[T~,k,pf[u as in (3.2), we need a technical lemma (for N > 2). 

(n+l) 
A r,~u(, + 0Dcu(, +,)(Tn +2,J) 

3.10. Lemma 

Let k E [1, oo),p E [k, oo], n a natural number, f E C(s and ~ ~ 2 1 .  
Define 

P 
Fk,e;,(f)=(1--a,) ~ ~ Da~m(Tm+,,ef ) (3.28) 

m = k A E V ~  l 
mes 

where, as usual, Tp+l,pf = f ( p < oo). 
Then for p < oo we have 

I n-I 
n l f l n +  ( 1 + 1  nO~l)l~=lO~n-l+lFk+l'p;l(f) 

FI~'P;"(f) < / + EP~(f)' 

[ E ~ ( f )  

if p > k  
if p= k 

(3.29) 

[where En P is defined as in (3.6)]. The sum above is zero when n = 1. 
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We may express the estimate for F in matrix form. To this end, let F, 
If[, and E e be n • 1 column matrices whose ruth entries are Fk,p;,,, Iflm, 
and Em e respectively. Let G and J be the n • n matrices defined in (3.4) and 
(3.5) with N = n. Then if k < p  < oo we have f o r j  ~ [1,n] 

"([( --',t l } Fj ~< 2 1 + G ( J l f l  + E e )  (3.30) 
k=0 1 -- a I 

J 

The proof of this lemma involves a careful application of Lemmas 3.8 
and 3.9 to the summand in (3.28). We then get (3.30) by noting that 
Fk+ lr < Fk,e,t(f) and that if two matrices are both zero on and above 
their diagonals, then so is their product. 

3.11. Proof of Theorem 3.2 

Our task is to show that the conclusions of Lemma 3.9 and 3.10 
continue to hold when p = o o  and then to sum (3.26) over A ~  V M, 
1 < M ~< N. To this end, let 

R~'P(f) = right-hand side of (3.26) (3.31) 

Since this is a sum of nonnegative (though possibly infinite) terms, it is well 
defined for p = ~ .  We will first show that 

DA( T J )  = li~m~oD A( Tk,pf) ~ p-+oolim R~'e ( . 

--- R~'~( f )  < oo (3.32) 

The first equality follows from the fact that DA(. ) is a continuous seminorm 
on C(~2) [cf. Remark 2.4(a)]. Thus we are required to show that, under our 
hypotheses q, E D N, f E C N, 

lim R~,P(f) = R~,~( f )  < oo (3.33) 
p---) oo 

We do this by induction on N as follows: 
(i) We show that (3.33) holds for N = 1 and then make the induction 

hypothesis that it holds for N ~< M - 1. 
(ii) It  will follow that Lemma 3.10 holds f o r p  = m, n < m - 1. 
(iii) This will yield a bound for Fk,p; M_ i, P < oo, with which we will 

establish (3.33) when [A I = M.  
(i) Let N = 1. Then b y  (3.27), if p < oo and i E L, 

R['P(f)  = ~, Bi~'eDj(f) (3.34) 
j = l  
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Now suppose p > i. By Lemma 3.7(b) and (3.20), 

Hence 

P P 
Rik'P(f) = E Bik:PDj(f) = E Bi~'~Dj(f), (i < p  < oo) (3.35) 

j = l  j = l  

Finally, Lemma 

lim R,~'P(f) = E Bik '~  = Rk'~(f)  (3.36) 
P ~  " - - "  j = 1 

3.8 shows us that 

R?'~(f)  < ~ R f ' ~ ( f )  < ok,~(g,)lfl~ < ~ (3.37) 
J 

where O~,~(qs) is defined in (3.3). 
Thus (3.33) holds for N = 1. Assume that, for some M ) 1, it holds for 

a l l N <  M - 1 ,  A E  V N ( f ~ C  N a n d o E ~ N ) .  
Let n o w f  be in C M and ~ E 2 M .  Then apriorif  ~ C N, eO E 2 N  for 

each N < M. 
(ii) By the above induction hypothesis, (3.26) holds with p = m and 

IAI = j  < M -  1. An examination of the proof of Lemma 3.10 reveals that, 
in that case, the statement of Lemma 3.10 continues to be true with p = ce 
(and E ~ = 0) for n < M -  1. Thus, we have that, for 1 < n < M -  1, 

F~,~;n(f) < ~ K~,,If[ ' (3.38) 
l=1 

with )lm) 
Kn,,= ~ I +  1 m=0 1--Z--~IJ G J (3.39) 

n , l  

where J, G are as in (3.5). It is permissible to extend this sum over m to 
M -  1 (rather than n - 1) since the summands are zero for m >/n - 1. 
Since ff E ~ M ,  all entries are finite and 

F~,p;~(f) < ~ for f ~ C M, ~ E 2 M ,  n ~< M -  1, and 

(3.40) 

(iii) Fix A ~ V M and put, for any h ~ C(s 

/7 (n) 
/'~,~(h) = ~ ~ B ~,"-1 a,r ~ dr,~nDTu,(T,+l,ph ) (3.41) 

n = k  F E  V M T ~ n  
T U n ~ U M -  1 

i.e., the second term of R~'P(h) (we have adjusted the index "n"  a bit). As 
usual, ua, r #  k,k- 1 = ~A,r and T e + l,pf = f for p < ~ .  
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Now suppose that p > max A. Then by Lemma 3.7(b) and (3.20) we 
have 

Rk'p(h) = 2 Bk:~Dr(h) + Pk'P(h) (3.42) 
FEVM 

m a x F < p  

Thus, to prove (3.33) it suffices to show that 

lim pk,p(f) = pk,:c(f) < ~ ({A I = M )  (3.43) 

Consider Pkr From (3.41), (3.23), and (3.25) we have, for k < p < m, 
that 

M - 1  p 

pk'p(h) < ~ P~Y(h) < ~ ~,, aM_j+ 1 E D'r~,(Tn+l,ph) 
A ' @ V  M j = l  n = k  T 

T u n e  1~ 

M - 1  
<<.1__!_ E 

l - a 1  j=l  
OtM_j+lFk ,p; j (h  ) < O0 i fh  ~ CMandk  <~ p << 

(3.44) 

as follows from (3.40) above. 
Suppose now that g is a cylinder function based on q. Since P~'P(h) is 

finite for h ~ C M, P~'P(.) is a seminorm for each p < ~ ,  so that if 
q < p <  ~ ,  

IV~'P(f) - e~ '~( f ) l  "4< P~+(f - g) + P~'~(f  - g) (3.45) 

Here we have used ek,e(g) = ek,~(g) forp  > q. 
Now it follows from (3.44) and (3.38) (and its analog withp < oc) that 

pk+(.): C M ~  R l is continuous at 0 for eachp < m, under our hypothesis 
that ~ E -~M. Moreover, the bounds on P~'e(h) may be chosen uniformly 
inp ,  since Ef(h)-+O as p---) m f o r j  < M, h ~ C M. Hence we may make 
the left-hand side of (3.45) as small as desired by first choosing a cylinder 
function g close to f (in the I " I, seminorms, 1 ~< n < M) and then letting p 
go to m. We have therefore established (3.43) for A E V M and therefore 
also (3.33). 

It remains to estimate I Tk+flu. As in (3.44), we have from (3.26) 
(extended to p < or that 

]Tk,pflN = ~, DA(Tk+f) 
AEVN 

r A 

N - I  

1 ~ aN_j+fkr  ) 
1--41 j=l 

< P~,eIf[N + ~ (GF)N (3.46) 
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for 1 < k < p < m. We have used (3.22), (3.23), and (3.28). Now applying 
(3.30) of Lemma 3.10 (and letting the sum over k extend to N - 1 there [see 
remarks after (3.39)], we conclude that (3.2) holds and its right-hand side is 
finite. As for (3.7), simply estimate (3.15) as above [see Theorem 4.4(a)(ii)]. 

3.1 2. Remarks 

It follows, as in the proof above, that in fact 

lim ITk j]N=ITkf[N,  f E C  N, O ~ f ~  N (3.47) 

since by the estimates of Theorem 3.2, ]Tk,p" [ is a seminorm on C N for 
each p < oo, when q, ~ D N . 

The N--- 1 estimate 

ITJ I ,  -<< a,(e~)l/I , , ,~ ~ _~  (3.48) 

may be used to prove Dobrushin's theorem and Vasershtein's formula (1.5). 
See Ref. 7, Corollary 3.3 or Ref. 23, pp. 61 and 62. 

4. DERIVATIVES OF ~--> ~j~f 

4 . 1  �9 Existence of Derivatives of q, ~ ~*f: ~ ]  ~ C(f~); 
Ursell Functions 

In the following, all interactions will be in ~ l  a n d j  is a fixed point of 
L. Given an interaction ~, write 

k d ' )  = - E IA) 
A ej 

As in Section 2.5, k, E C(~). 
Let g = k~, h E C(~2) and s ~ ~r-j" Put 

= fxp (dx) e 

and 

(4.1) 

(h>g(s) = Z~-~(s) fxjpj(dx)eg(XvS)h(xvs)(= ~h( s ) )  (4.2) 

Now suppose the function g in (4.2) depends also on some parameter 
v E l ,  I C R 1 an open interval. We claim that if v - ~ g v : I - ~ C ( ~  ) is 
differentiable at v 0 ~ I, then so is v-->(h>go:I--> C(~), with derivatives 
given by 

(h>~o[v = vo = (h ( g'vo - ( g~o>g o>~ (4.3) d ~  t, e o 
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where g~o = (dgv/dv)l . . . .  . This may be seen by means of the usual domi- 
nated convergence arguments. More generally we may suppose that e lies 
in some open ball of R ' ;  the partial derivatives of v-~ (h)go are then found 
by successive differentiations of the type (4.3). Finally, with suitable modifi- 
cations to (4.3), we may allow h to depend upon e also. 

Our concern is with Gateaux derivatives of ~---> fJ'f, so that we now 
specialize to functions of the form 

v ---> gv = g + v .  k = g + k viki (4.4) 
i=1 

where v = (v 1 . . . . .  v,) ~ R" and k = (kl, . . . , k,) ~_ (C(s (The k i will 
arise as k+, [see (4.1)] or as A~, (2.18).) Note that gv ~ C(s for v ~ R" and 
by the above remarks, v--> (h)g, is C ~ differentiable. 

We introduce the notation 

m ~m <h>g,)[v=0 (4.5) 
! 

when 1 < m < n. It is clear that the order of differentiation is immaterial 
and that 

Ol(h>g = ( h k l > g  - (h>g(kl>g (4.6) 

We may characterize the derivatives (4.5) as follows. 
For f. ~ C(f~), 1 < i ~< m, define the ruth-order Ursell function [with 

respect to g ~ C(s j ~ L] by 
m 

u g ( f ~ , . . .  , f ~ ) ( s )  = u~(( f~ }, )(s) 

= ~ ( - 1 ) l Q ~ l - ' ( I Q m  l - l ) !  ~ ( fe )g(s )  
Q,,, P~Qm 

(s ~ s (4.7) 

where Qm runs over all partitions of the set [1, m] andfe  = l[ ie , , f '  (see, e,g., 
Ref. 24). The significance of Ursell functions is that 

f l  0i(h}g= ug+ l(h, kl , . . . , k .)  (4.8) 
i=l 

This may be verified by induction on n, using (4.6) [see (4.10) below]. Note 
that u~g((f})(.) ~ C(~2). 

For later purposes we need to generalize somewhat the notion of Ursell 
functions. Note from (4.2) that the right-hand side of (4.1) is still well 
defined when g E C(Xj • M), f~ E C(Xj x Mi), 1 < i < n, where M, M~ are 
topological spaces (of course, the argument "s"  has to be suitably altered). 
In particular, our Mi will be of the form ~ x ( X ~ s ~ ~= 1 A,~ or some suitable 
subset.) 
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We mention some properties of Ursell functions. 

Remarks  4.1.1. (a) If m ~> 2 and some fl is independent of the j th  
coordinate, u g ( ( f } ) = 0 .  This follows from the representation (4.8): if 
kl(X v s) is independent of x ,  Ol(h)g ~- 0 for all g. 

It is clear that (f.}~= 1 ~ u ~ ( ( f } ) : ( C ( f O ) n o  C(f~) is multilinear. This 
and the above remark allow us to, for example, replace any f in the 
argument by f. - ( f ) g  without affecting the value of u g. 

(b) Letting Qm-1 denote partitions of [ 1 , m -  l] and putting CQ~ 
= (--1)lQm]-l([ Q m [ -  1)!, we have 

ug((f/}im) = Z Cam_, Z ( f e ( f m - - ( f m ) ) ) g  H (L)g  (4.9) 
Qm-1 P ~ Qm- ~ S ~ Q,~ 

s c P  

This may be seen by differentiation of v o u ,  g+_vlf'((f}'~-) ), or com- 
binatorically by generating the Qm from the Qm-I, by adding the element 
m in [Qm-II + 1 ways. 

The remarks in (a) also follow from (4.9). 
(c) Moving back to the general situation in which 

v---> g v , v---> f ,  v , 1 < i < m 

are differentiable from an open set I C R 1 into C(a), we have that 

d dgv .--, 
_ _  Ug v m , ( f i , v  } "+" 2.a U~n~| - - 7 - - ,  ( f j , v ) j v a i  (4.10) 

i=l \ a~ 

This is an expression of Leibnitz' product rule on the symbols Um~(), 
�9 �9 

4.2. Relative Hamiltonian Spaces 

We will find it most convenient here to work with the so-called relative 
Hamiltonian norms on our interactions rather than the usual ~n norms. 
Let 

~F = [..J (~2~, A finite} (4.11) 

Then we define H 1 to be the space of all continuous real-valued functions 
H ( . , . )  on ~2 F satisfying 

(i) H ( s , t ) = - H ( t , s )  
(ii) H(s, t) = H(s, u) + H(u, t) whenever (s, t) ~ f2~x and (s, u), (u, t) 

E ~x, for some A c L 

(iii) [Hll ---- sup (sup([H(s,t)l  :s = t off a}) < ~ (4.12) 
a E L  

H I  is the first relative Hamiltonian space, so named because an 
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interaction ~ ~ ~1 gives rise to an element of ~ ,  by 

H+(s,t)= 2 [ q ~ ( s l A ) - ~ ( t l A ) ]  (4.13) 
ACL 

Note that ;gr equipped with the norm [. ]1 is a Banach space and that the 
canonical map (4.13) takes ~1 into ~ 1  continuously--indeed [/4~]1 
~< 2Hq~ll 1 . As is to be expected, relative Hamiltonians are more closely 
related to their Gibbs states than are interactions (26'27) . 

Next, define for H E ~ 1 ,  j E L and A C L - j  

h H ( J , A ) = s u p [  2 (-l)lrlH(sr, t) :(s,t) Ea'Auj] (4.14) 
F c A U j  

For instance, if A = (i} =P ( j ) ,  s = SivS/v~ and t = t~v (/vL 

Xu(j, {i}) = sup{ IH(s~v sjv ~, t) - H(tiv Sjv ~, t) 

- H ( s / v  ~v Lt)[ : (s, t) ~ a'{i,jl} (4.15) 

If A = 0 ,  XH(j,O)=sup{lH(s,t)l:s =t  off j ) ~ < ] H I , .  Define the nth 
relative Hamiltonian norm by 

IHI,  = sup ~ )tH(j ,A),  
j A C L - j  

IAI = , -  1 

and the Banach space ~ ,  by 

with norm, say, 

n = 1,2 . . . .  (4.16) 

~ .  = { H E ~YC~, : [HIm < O% 1 <~ m <<. n} 

11/411. = 1/41.  
m=l  

(4,17) 

If H = H+ we will write )U for X/++. X+(i, j )  measures the rate of decay 
of the potential: putting (4.13) and (4.14) together one sees that 

X+(j, A) <~ 2 lar +' sup a ~ ~,(s [ A) (4.18) 
s D j u A  

The right-hand side measures the strength of interaction between "spins" in 
j U A. If, for example, q, has finite range R, then X+(j, A) = 0 whenever the 
distance between j and A is greater than R. From (4.18) we may derive 

[H+[n=su p ~ X+( j ,A)<2~sup  ~ (IAnl-i 1 ) ,~ ( . ,A) ]~  (4.19) 
j A :j(EA j A : j@A -- 

IAI = ~- 1 

sO that the canonical map (4.13) takes Pn to Wn continuously. 
The estimates we shall come across in the sequel involve expressions of 
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the form DjuA(k+), k~ as in (4.1). The relative Hamiltonian norms are 
particularly well suited to these since (we are now fixingj as in Section 4.1) 

Djua(k~) = )t~(j, A), j ~ A (4.20) 

and in particular 

Dj(k4) < IH6ll (4.21) 

To see this, note that 

DjuA(k~) = sup ~j~A~JUA(s, tIA) = sup A~L+JUA(s, tIA) 
(s,t)@~'Auj A :" 

(4.22) 

by Property 2.3(e). But 

~, @JUA(s, t lA)= ~ ~ (-1)lr l@(srlA) 
A c L  A c L  FcjuA 

= ~ 2 (-1)lrl[@(Srl A ) -  @(tlA)] 
A c L F c j U A  

= ~ ( -  1)lrlH,(sr,t) (4.23) 
FcjUA 

since ~ , r ( -  l)lrl = 0. Finally, use (4.14). 
We are now in a position to state the two main results of this section. 

4.3. Proposition on 0/N(~) 

For N = 1,2 . . . . .  ~v, as defined in Section 2.6, is a continuous 
real-valued function on ~U+l .  (Hence 21v as defined in 3.1 is an open 
neighborhood of the origin in PN+I') 

The a N are in fact "locally Lipschitz": e.g., for N = 1,2 we have for 
~,c)' ~ PN+I, H = H~, and H '  = H~., 

[al(~) - a,(qr <<. �89 - H'I2 + �89 - H'[,(IHI2 + IH'I2) (4.24a) 

le~2(O) ae(q,')l ~< IH - H'[3 + � 8 9  n ' [z( lnl2 + [n'12) 

+ I n -  H'll(klnl  + + 41HI=In'l= 
+ 4  L/t2 3 , - , 2  + �89 (4.24b) 

4.4. Theorem (Continuity of ~-~ ~Pf and Its Derivatives) 

Fix j E L 
(a) L e t N = 0 , 1 , 2  . . . . .  I f f E  C u a n d q ~ j v + l ,  
(i) ~'f ~ C N (C O = C(f~)). 
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N 

(ii) 1~gIIN ~ [fiN + • ~m(~P) E DrEj(f) (4.25) 
m=l  FEVjv_m,j~s 

(where the sum is zero for N = 0). 
(iii) ep---) ~f'f: Pu+l --> cN is continuous. 
(b) Let n be a natural number, ~ki E ~1 for 1 < i < n, q~ ~ ~ l  and 

f E C(fl). Then 
(i) The function ( u l , . . . ,  u,)-->~j*+Eu'+f:Rn-->C(12) possesses the 

nth derivative 

o" ~,+~u,+f 
0r ...... *"~*f= Oul - Oun J ,,= .,.=0 

= u,g+ ,(f, k~ . . . .  , kn) (4.26) 

where g = k, ,  k 1 = k,, as in (4.1). Moreover, q~---> 3+, . . . .  ,.~*f: ~ 1 ~  C(12) 
is continuous for fixed f ~ C(f~). 

(ii) If in addit ion 4 ' , q ~ l ~ N + l  ( N = 0 , 1  . . . .  ) and f E C  N, 
3,, . . . . .  %fj~f is in C u. Moreover, r --> 0,, . . . . .  ,offf is continuous from ~ u +  
into C N, for fixed f ~ C N, qJi E ~N+l.  

Estimates of the derivatives are as follows: for M = 0, 1 . . . . .  
M+I  

IO, ...... +.gfflM < E CM,m(I~'{*'}) E DjwA(f) (4.27n) 
m=l  AEVm_ 1 

j ~ A  

where each CM, m(q~, (~ki}) is a polynomial in [H, lt, IH+,lt for 1 < l ~< m + 1 
(and 1 < i < n ) .  

Note that the above estimate is summable over j if f E C M +~. 
In concluding the statement of the lemma, we give estimates of those 

derivatives of ~ff needed for establishing the second derivative of the Gibbs 
state. Let H 1 = ]Hq~] etc. Then 

Iodj*fl ~ < Dj(f)min(ll q~lla, [n~l,) (4.28) 

I3,~,,~f'floo < Dj(f)[H'IilH21, (4.29) 

IO,fffl~ <<. O / f ) ( I a ,  l= + IHqJlIHq,[2) + ~ Ojj(f)[Hq,[, (4.30) 
l 

~*j 

4.5, Estimating lu.(( fi))l 

As we have seen in Section 4.1, we may write 

rI ( M 
Qn S~Qn iES g 

(4.31) 
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where the prime denotes a sum over partitions without a singleton. Since 
supxeNIf (x  v s) - (f.)g(S)] -<< Dj(f), we see that 

[~/n ( ( f  }1)[ ~ ([Qnl 1)! ~ D j ( f . ) t ~ f i D j ( f . )  (4.32) 
i = 1  i = 1  

By means of the inclusion-exclusion principle one can derive a formula for 
t n (Ref. 23, Section 4.11), namely, that t~ = 0, t 2 = 1 and if n/> 3, 

tn = ~ ' ( 1  a~l - 1!) 
O,, 

[ n / 2 ]  r -  1 r -  I 

k! n)(r--l 1 ) ( / )  / ) ~ - k - l ( _  = 2 ~ 2 " (k  ( r -  1) t (4.33) 
r = l  k = O l  = k  

(4.32) is the fundamental estimate of this section: we will see that all 
higher-order differences may be expressed in terms of it. 

We note here that, in the case n = 2, a better estimate may be obtained 
by means of Schwartz' inequality (as in Ref. 3, Lemma 2), namely, 

[u(~(fi, f2)[ < min[[f~[oo ,Dj(fl)]" Dj(f2) (4.34) 

We remark that the estimates (4.32) are themselves a consequence of 

lu~ < t. rI sup I /l(XvS, X'vS)l (4.35) 
i = 1 x , x '  E Xj  

with s E f~L-j. Also, the estimates, suitably modified, continue to hold for 
the situation (mentioned in Section 4.1) in which, for example, f E C(X • 
M,). 

4.6. A Representation for Higher-Order Differences of 
Ursell Functions 

We consider the functions /Am+l('), corresponding to the mth deriva- 
tive, m/> 1. Let A c L, IAI f> 1. We may suppose that j ~ A, since other- 
wise [Umg+l(')] A -- 0. Let (s, t) E f~k and with respect to this pair, put 

{ gr(X) = g(xv s~) 
(4.36) 

k,- , r (x)=ki(xv~r) ,  F c A ,  l < i < m + l ,  x ~ X j  

Let v = (Va}a~A, 0 < Va < 1 for each a ~ A. Put 

K ( F , F ' ) =  IX ( 1 - v ~ )  I-[ %,  I " C F c A  (4.37) 
a E F '  b ~ F - F '  
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where the empty product is assumed to be unity. Finally, put 

gv= 2 K ( a , r ) g r  (4.38) 
F c A  

and similarly for the k;. 
We note the following properties; 

(i) 2 K ( F , F ' ) =  1 (4.39) 
F ' C F  

(ii) 

for all F C A 

( 1 - v c ) K ( r  c,r'-c), if c ~ F '  

vcK(F - c, I'2)_ if c E F - F' 
K(F, I") 

(iii) 
F', then 

(4.40) 
If v is such that v a = 0 for all a ~ F' and o b = l for all b E F - 

1 if F = F '  (4.41) 
K(A, F) = 0 otherwise 

Hence 

= g r  if Va=[O' a ~ F  (iv) (4.42) gv 
1 otherwise 

Of these, (ii)-(iv) are straightforward consequences of the definitions (4.37) 
and (4.38). (i) may be proved by induction on 17 c A. 

Now put 

g m +  1 S t F(v) = u~%l({ki,~}i= 1 )(s, ) (4.43) 

As mentioned in Section 4.1, this makes sense as a function on C(s and 
is differentiable in v. Introduce the notation 

3 F C A (4.44) 
OF = I - I  OV a , 

a~r  

The order of integration or differentiation will be immaterial in what 
follows. We claim that 

[u~+,({ki};+')]A(s,s')= f[O,,ltAlOAF(v)dv (4.45) 

(Since the right-hand side involves derivatives of Ursell functions [cf. 
(4.10)], it is a linear combination of Ursell functions Un+m, n = 1, 
2 , . . . ,  IA[ + 1. We have thus reduced the problem of estimating the 
left-hand side to that of the estimates of the previous section.) To see why 



High-Temperature Differentiability of Lattice Gibbs States 199 

(4.45) is true, note that from Section 2.1, (4.42) and (4.43), 

LHS (4.45) 

= lxFrlug~ /rk  )m+l) 
E (--  ] m + l l /  i,rJl 

FcA 

= ~ ( -  1)lrFF(v~ = 0 if a ~ F, 1 otherwise) 
FcA 

= E ( - 1 ) [ r l { F ( v ~ = 0 i f a ~ F , v . = l i f a E ( A - b ) - F ; v  b = l )  
F c A - b  

- F(v  a = O i f  a E F , v a =  l i f a ~ ( A - b ) - F ; v  b=O)} 

for some b ~ A. But by the fundamental theorem of the calculus, this 
equals 

(-1)lrl fold% ~-~b F(Va = O if a E F, va = l if a E (a  - b) - F; 
F c A - b  

% variable). (4.46) 

Proceeding by attrition, we arrive at (4.45). 
Let us now evaluate the first few derivatives of F(v). If a E A we have 

from (4.10) that 
m+l 

OaF(v)=Um+2(Oag,{ki}l+l) + E Um+l(Oakj,{ki)ir (4.47) 
j= l  

where we are omitting mention of some indices. If b E A, b :/: a, we have 

O o,bF(1) ) = Um+ 3(O ag, abt, ( ki } ) + Um+ 2(O a,bg, {ki}) 

m+l 

+ Z u,.+2(aog, 
j = l  

Jr- E blm+ 2(Obg, Oakj, { ki) i~j) 
J 

-~ E l.lm+ l(O a,bkj , { ki ) i~jl) 
J 

.4- Z E b/m+l(Oakj,'Obkjz' {ki}i~-j,.iv~j2) (4.48) 
jt  j2:/:j, 

In order to write a formula for 0aF(e  ) for general A, one evidently needs 
some more notation. This will be discussed in Section 4.10 of this paper. In 
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this section we will concentrate on the existence and continuity of the first 
two derivatives of the Gibbs state and only indicate a means of proving the 
full force of Proposition 4.3 and Theorem 4.4. For details see Ref. 23, 
Section 4.10. With this goal then, it is clear that we will need at least the 
following estimates of boundedness: 

First derivative 
~ ~ ?  ~" U2 : C1---), C 0 

O qq,~2~j~ = U 3 : 

Second derivative 
C2--.)C 1 

C2--~ C 0 
(4.49) 

For the continuity of q~ ~ f~f, which in our method of proof entails the 
taking of one derivative, we will need also an estimate of [Uzloo, ]u21 l, and 
lu212, As we shall see, these estimates will also yield the continuity of a l and 
a 2 on the appropriate spaces. Thus, what we are looking for are estimates of 

lu21~, lu31~, lu21,, and lu212 (4.50) 

It is clear from (4.47) and (4.48) that estimates of lu l , [u31~, and [u41 ~ 
will suffice. In general, for the nth derivative, we will need estimates for 
lu11 , where l = 2, . . . , n + 2. 

4.7. Lemrna 

Ursell functions below are as in (4.7) (g  a n d j  fixed). Let f,  k, kl, k2, 
and k 3 be in C(~2) and let i, j ,  and l be distinct points of L. Then we have 
(c~ c(~)): 

(a) C~ estimates: 

[Uz(f,k)l~o << Dj(k)min[ Ifl ~ ,Oj(f) ] (4.51) 

lu3(f, k,, k2)l~ < Dj(f)Dj(kI)Dj(k2) (4.52) 

]u4(f,k, ,kz,k3)[~ ~ 4Dj(f)Dj(kl)Dj(k2)Dj(k3) (4.53) 

(b) C 1 estimates: 
D,(uz(f,k)) < Dj(f)Dj/(k) + Dj(f)Dj(k)Dj,t(g) + Dj, z(f)Dj(k) 

(4.54) 

D,(u3(f,k, ,k2)) < Dj(f)[ Dj(kl)Dj,,(k2) + Djj(kl)Dj(k2) 

+ 4Dj(k,)Dj(k2)Dj,l(g)] + Dj/(f)Dj(K,)Dj(K2). 

(4.55) 



High-Temperature Differentiability of Lattice Gibbs States 201 

(c) C 2 estimate: 

Di, l(u2(f,k)) <~ Dj( f )[  Dj.ij(k ) + (Dj, l(k)Dj, i( g) 

+ Dj, i(k)Dj.l(g)) + Dj(k)Dj, i,l(g)] 

+ same expression with k a n d f  interchanged 

+ 4Dj(f)Dj(k)Dj,i( g)Dj,,(g) (4.56) 

Moreover, suppose that g = k~, k = k+, k i = k~, as in (4.1). Put H i 
= H+, as in (4.13). Then we have 

(a') C o estimates: 

]u2(f ,k)]oo ~< min( Dj(f)ll@ll, ,Dj(f)IHo] 1 ,[fl~lH6]l ) (4.57) 

lu3(f,k~,k=)lo~ << Oj( f ) ln ' ] , ln2 l ,  (4.58) 

[ua(f,k~,k2,k3)l~ < 4Dj(f)ln~l~ln2t~ln311 (4.59) 

(b') C 1 estimates: 

lu2(f,k)[~ <- Oj(f)(lnwl= + In,~[,In,12) + ~ Oj,z(f) " ln,] ~ (4.60) 
l 

lu3(f,k~ ,J2)11 < Oj(f)(IH~l~ln2[2 + In~121H211 + 41n~l~ln21lln,12) 

+ ~ D H ( f  ) �9 IH'I~]H2[~ (4.61) 
l 

(c') C2 estimate: 

lu2(f,k)12 <. Oj(f)(ln+13 + In,/21H,12 + 21H,~[,IH,~[~ + In~l,In,13) 

+ IH+h / ~ ,Dj ,~ ( f ) ' IH ,  I2+ ~ Dj,i,t(f) 
iij~_ ( i,l ) E V 2 

L 

j ~ ( i , l }  

+ Io~12 E Dj, i ( f )  (4.62) 
i 

i ~ j  

This concludes the statement of the lemma. [In deriving the C 1 and C 2 
estimates, we have only used (4.51) in the form lu2(f,k)loo <<. Dj(k)Dj(f).] 

Note that each of the estimates (4.57)-(4.62) is in fact summable over 
j ~ L, given that f, O, + etc. are in appropriate spaces. 



202 Prakash 

Proof.  (a) The C o estimates follow directly from (4.32) and (4.34) 
of Section 4.5, since t 2 = t 3 = 1 and t 4 = 4. 

(b) For  l : / : j ,  let s, tE~2A_ j, with s = t  off l and consider the 
specialization of (4.45), namely, 

[u2(h ,k)  ] '= foldv d F ( v  ), v E R 1 (4.63) 

where F(v)  = u~o(f~, kv) as in (4.43) and 

gv = v g ( x v s  ) + (1 - v ) g ( x  v t) = gz(x)  + v ( g ( x )  - gz (x) )  (4.64) 

and where gl(x)  = g ( x  v t); g(x )  = g ( x  v s) as in (4.36). Similarly, k, = k z + 
v ( k  - kt), etc. 

Thus, by (4.10), 

, 

= u2(f~, k - k,) + u3(fo, k v , g - g,) + u2( f - f t ,  kv) (4.65) 

But the Ursell function is multilinear and 0 .<< v < 1, so that  

dF I -~v <~[vlu2(f ,k  - k31 + (1 - v) lu2( f~ ,k  - k,)l] 

+ [ V t u z ( f - f t , k ) l  + (1 - v ) l u 2 ( f - f t , k t ) [ ]  

+ [velua(f ,  k,  g - &)[ + v(1 - v ) lu3 ( f , k , ,  g - g,)l] 

+ [(1 - v)v[u3( f t , k ,  g - &)[ + (1 - v)21u3(fl ,kz,  g - gt)[] (4.66) 

Now consider, for example, 

uz(fl , k  - k,) =-- u~~ v t ) , k ( x v  s) - k ( x v  t)) 

= u~v("t)( f(xv t ) , k t ( x v  s , x  v t)) (4.67) 

where we are using the generalized sense of Ursell functions. Since 
supx((kt) j) < Djj (k )  and supx,y[f(xv t ) - f ( y v  t)l < Dj( f ) ,  we have from 
(4.35) that 

lua( f t ,k  - k,) I < D j ( f ) D j . , ( k )  (4.68) 

as in Section 4.5. Thus we see that  each bracketed term in (4.66) has the 
same estimates for the Ursell functions in it. Indeed, from part (a) of this 
lemma we have 

I~vF[ < Dj( f )Dj , z (k )  + D j . , ( f ) D j ( k )  + D j ( f ) D j ( k ) D j j ( g )  (4.69) 

Note that the coefficients in v sum to unity in each case. This situation 
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obtains for general A and m, and is a consequence of multilinearity and 
(4.39). 

Integrating (4.69) over v we arrive at (4.54). 
Next we prove (4.55). The above argument is modified by putting 

F ( v )  = u ~ ( f ~ ,  kl ,~,  k2.~) (4.70) 

so that 

and now 

J'= foo ldv dFde (4.71) 

d F  
= u3( L , k 1 - k l , , ,  k2,v) + u 3 ( L ,  k l ,v ,  k2 - k2,,) 

+ un(f~, kl ,v ,  k2,v, g - -  gl) q- u3 ( f  -- f t ,  k , ,v ,  k2,v) (4.72) 

By a straightforward computation, we may simply drop the v's and use part 
(a) to arrive at (4.55). 

(c) C2 estimate: 

We now have the variables v = (vi, vt) so that F ( v )  = ug2o(fv, kv), where, 
suppressing the unchanged configurations in f~(~,t)c, 

k =  k ( x  i , x / ) ,  k i =  k ( x ; , x z )  
(4.73) 

k z = k ( x i , x l )  , and k~, = k ( x ; , x ; )  

k v = v~vzk + (1 - ve)v~k ~ + v~(1 - vt)kz + (1 - vi)(1 - v~)kil (4.74) 

Now if we write 

and 

then we have 

k~ = k,  - kil 
(4.75) 

k / =  k,  - k~ 

k i l  = k ~i'z) = k - k i - k t + kil 

O,kv = v , ( k  - ki) + (1 - v , ) ( k ,  - k,,,) = v , k '  + (1 - v , ) k /  

and 

= ~]~ K ( ( I } , F ) k ~  [recall (4.37)] (4.76) 
r e ( t )  

atkv = v~k ~ + ( 1  - v~)k/  

a~lkv - -  k ~t 
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Thus, using (4.48) we have 

0i,F(v ) = [ u3(O L , k v , ~,gv) + u3(8 L , k~, Oigv) 

+ [ u3(f~, 8,k~, Ozg~) + u3(fv, a,k~, O~g~) ] 

+ [ ,ko, ai,g )] 

+ [ u4(fv,k~, O,gv , O,gv) ] 

+[uz(fv,O,;k~)] + [ u2(0/zfv ,k~) ] 

+ [ u2(8~v, O,kv) + u2(O~f v , Oik~) ] (4.77) 

Now using (4.73) and (4.75) and using the ideas expressed in the proof of 
the first C 1 estimate above, we may see that, for example, 

lu3(L, O,kv, Oigv) 

=U3( ~, K((i,l},rl)fr,, ~ K((i},r2)k~- 2, 
FIC {i,1} F2C{i} 

F3C{I} 

<<" 2 K({i,I),FI) 2 K((i),F2) • g({/},]~3) 
F 1C {i,l } F2C {i} F3C (l } 

• lu3(fr,,k~.=, g~)[ (4.78) 

since u3(. ) is multilinear and each K(., .) is nonnegative. (We have reverted 
to Section 4.6-notation to give a sneak preview of why we can, in general, 
drop the v's.) As we have seen, 

[u3(fr , ,kr t ,  g~)[ < Dj(f)Dj(k')Dy( g i) = Dj(f)Dj,,(k)Dy,k( g ) (4.79) 

By (4.39) applied to (4.78), then, 

lu3(fv, 8,k~, O,g~) I < Dj(f)Dj/(k)Dj.i(g ) (4.80) 

and proceeding in this way on (4.77), we have (4.56). 
We now turn to the estimates (a'), (b'), and (c'). Note firstly that 

DA(Um) -- 0 whenever j E A. By (4.20), if j ~ A, Djua(k+) = Xr and 
thus, by (4.19), 

Djua(kr < IH, I,+I (4.81) 
AE V. 
j ~ A  

Apply this to part (a) with n = 0 to get (a'), and to part (b) with n = O, 1 to 
get (b'). In part (c) a little care with counting is well rewarded (by a factor 
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of 2): for example, 

{i,1}CV2 
j~{i ,1) 

(4.82) 

since the sum in the left-hand side is over unordered pairs of distinct 
elements. 

4.8. Partial Proof of Proposition 4.3 

The left-hand sides of (4.24a) and (4.24b) are undefined unless at least 
one of %(e~), %(4Q is finite (n = 1, 2 respectively). We first demonstrate 
(4.24a) under this assumption, for otherwise arbitrary q~,qr in ~1;  setting 
qs 0 shows then that, in fact, %(q~) is finite whenever ~ E ~1,2. The 
continuity is then obvious, similarly for (4.24b). 

So suppose that one of a,(q,),%(~') is finite (and ~ , 0 ' ~  ~1). From 
Section 2.6 we have 

[a,,(qr - %(~)1 = �89 sup ~ RA,j(d?' ) -- sup E R A , j ( ~ )  
j A ~ V .  j A ~v,, 

, , A 
<�89 2 sup [ . f  ] a ( s , t ) - [  I*j ] (s,t) 

j A (s,t) Ea'A 
j~-A 

=�89 ~ sup sup [(#7'-l~ff)(h)]A(s,t) (4.83) 
j A (s,t) h~C(Xj) 

j ~ A  ihl =1 

(since h does not depend on f~{j}c, we can bring it inside the square 
brackets). Now 

d = fo ldu uf(h, k) (4.84) 

where 

and 

Hence 

= ~ ' -  ~, g = k , ,  k = k , ,_ ,  (4.85) 

f =  g + uk = ku,,+(l_,) , 

[a,,(qr - a.(qOI < ~ sup Z sup foldUD6(uf(h,k)) 
j AEV. h 

jq~A 

(where it is understood that u 2 is with respect to ~, , '+( l-u~).  

(4.86) 



206 Prakash 

We now specialize to the instances n = 1,2. For  n = 1 we have 

Ot(u~(h,k)) = lu~(h,k)h 
l 

l:/:j 

-4< (minlh[~ ,  Oj(h))lHo,_q,[2 + Dj(h)lH~;_dl [nu# + ( 1 - u)r 

< I n '  - HI2 + 2 I n '  - nl,(ulH'lz + (1 - u ) ln l2  ) (4.87) 

where we have used Lemma 4.7(b') with Dj(h) < 2lhl| [ h l ~  = 1, Ojs(h ) 
= 0 (since h ~ C(X])), and with H ,  = H,  H, ,  = H ' .  By the monotone  
convergence theorem applied to (4.86), (4.87) yields (4.24a). 

For  n - 2, the relevant sum in (4.86) is obtained from Lemma 4.7(c') 
and (4.85), to yield (4.24b). 

4.9. Partial Proof of Theorem 4.4 

(a) Continuity and Boundedness of ~ef. We will demonstra te  
that 1 71N < ~ f o r / ~  c N, then prove continuity of ~ ~ ~ f :  ~N+I  - '~  CN" 

For  N = 0, we know that ~ is a contract ion on C o ( =  C(~2)) if 
E ~1 .  Also, rp ~ ~ f :  ~1  -~ C O is continuous by usual dominated  conver- 

gence arguments applied to 

~fff(s) = Zr(s ) j (dx) f (xv  s)e k~(~) (4.88) 

using the facts that cp ---) k~ : ~1  ---> C(~) is continuous,  and 

le ~ - ek~'[ < eig~l=lk ~ - k~o,[~e Ik~-k~'t~ (4.89) 

Thus part  (a) of the theorem is proved for N = 0. 
Suppose N = 1. We have f rom (2.26) that 

I~]/11 -<< ~ Di(f) + ~ Ri,jDj(f) < Ifll + alDj(f) (4.90) 
i i 

i ~ j  i:/:j 

proving (4.25) for N = 1. So suppose N > 2. Now we have 
N 

Iffjfl~ < [fiN + ~ ~ ~ Rr#D(A_r)uj(f ) (4.91) 
rn=I A~VNFEVm 

j ~ A  F c A  

which may  be rewritten as 

N 

I~jflN <- [fiN + E E er? E Dr'uj(f) (4.92) 
m=l c~v,.  F ' ~  VN_ ~ 

j ~ F  r ' n r = o  

j~ r ,  
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If we drop the requirement IF" N I" = O and use the definition of a N we get 
(4.25). 

Thus we have ~j+f E C N and proceed to the q~ continuity. Recalling 
(2.27), 

21AI [ + a (s,,) 

= X ( -1 ) t r ' l fx  [ f f ] r ( d x l s r  ' (Sr,)r) a - r  , , , " f  (X~Sr,,X~(Sr,)a_r) 
F , F ' c A  

(4.93) 

with (s, t ) ~  ~2~ and j ~ A. Using the definition (2.4) of the Nth-order 
difference, we write this as 

21AI[ ~j*f]A(S, t) = ~ (-- 1) Ir'l s (-- 1)l~Cl(f~-r)+,T,r,r, (4.94) 
F , F ' c A  T c F  

where 

fra,-r(x) = fA-r(xv~r, ,  xv(~r,)A_r) (4.95) 

(")+,T,r,r' = fxj Izj+ (dx ] (Sr,)•) (4.96) 

In (4.96) it is to be understood that the symbol (Sr,)• refers to the 
IFlth-order difference symbol of s r, on the pair (Sr,, (Sr,)r), which in turn 
refers to the pair (s, t). This is why we retain the subscript F in the left-hand 
side of (4.96). 

Now select any one triple F, I", T. We will, whenever convenient, 
suppress some indices. Consider u-~ (f~-r)++,+,~,r, r, with a view towards 
differentiating (4.94). To this end, put 

kr, = k~(xvsr,) (4.97) 

and 

kr,;T = k~(xv(sr,)T ) (k+ = (x~s) = k) 

where, again, the switching is with reference to (Sr,, (sr,)r). 
Then by (4.3), 

d ( r a - r \  
-~u Jr' /++u+3,r,r ,= ~9+U+(dx](sr,)T)' f  A - r  

�9 (kr,,T -- (kr,,T)++u,,T,r,r,) 

= u~+U~[kr ,, f#-r(sr,,(Sr,)a_r)]((Sr,)~p) (4.98) 

where we hope the notation is clear. It emphasizes that the argument f r  a, - r  
is independent of T, because our intention is to differentiate (4.94) and 
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write the resulting sum over T C F there as a IFIth-order difference. From 
(4.94), (4.96), and (4.98) we have 

d ~?+,,f]a(s,t ) 21At[ ~uu 

= 2 ( -  l) Ir'l 2 ( -  1)lTtu2*,~-,~',~r'(kr ', fra'-r(sr ', (Sr')A-r)" ((Sr')~) 
F , F ' c A  T c F  

= 2 
F,r '  c A 

(4.99) 

Here the double brackets emphasize that the argument of f ; - r  is unaf- 
fected in the taking of the II'lth-order difference. The advantage of worry- 
ing about this is that when we use Lemma 4.7 in estimating u2, all terms 
like Djj(f~-r), Djj.k(f~ -r) are automatically spiflicated. 

The next step is to use 

If/r - ~f'flN -- E DA f/++"+f 
A+VN 

E sup(Idu [ ~-~..~?+u+f]A (") (4.100) 
AEVN aX dO I L UU ] 

That is, from (4.99), 

N 1 Ifj+f--~j+f[N<2 - f du 2 sup 2 2 [[u~2+~r r 
dO A~V~v aX F c A F ' c A  

(4.101) 

where + = ~' - ~. 
We specialize now to the instances N = l, 2. 
(i) IAI = 1. F o r  A = {Z) ( Z ~ j ) ,  (4.99) gives 

d 

< 

r , c [ l )  

[ D,(f)Dj(k) + Dj(f)(Dj,,(k) + Dj(k)Dj,,(g)) ] 
r ' c { t }  

(4.102) 

where we have used (4.51) and (4.54) and the arguments leading to them 
(with Dg(f) being set equal to zero.) Here g -- k++~.  Now put q~ = ~' - ,~, 
H = H+, H '  --- He .  Then by (4.20) 

Dj(k) = I H ' -  HI1, ~,Djj(k) = IH- H'12 (4.103) 
l 
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and 
~]Dj, ,(g)  < uln'lz + (1 - u)lnl2 

1 

s i n c e 0 <  u <  1. 
Now from (4.101), (4.102), and (4.103) we get 

I~Of - ~<~f[~ < I n ' -  nl~ifl l  

+ o i l y ) l i B  - n'12 + �89 - H'I,([H'[2 + In12)]  (4.104) 

so that + --> ~*f: Da2 ~ C 1 is continuous for each f E C 1. 
(ii) IAI = 2. For A = ( i , l } , j  f~ A, (4.99) gives 

4 [ d ~.~ +.~f]  i,ll < 

+ i[ ]'1 + ic (4.105) 
Again, the sum over F' cancels the coefficient 4 on the left-hand side and 
summing over (i, l} using Lemma 4.7 (and setting Dj, i ( f  t) = 0 etc. there) 
we have from (4.103) that 

d r~+"~fldu s "12 <'<' f i2 lH-H'[ l+(~ 'Dj ' l ( f ) )  
I~j 

x [ I H  - H ' I .  + I H  - H'II(uIH'I2 + (1 -- u ) l H I . ) ]  

+ D j ( f ) [ I H -  H' [3  + IH- H'l.(ulH'h + (1 - u)lHI.) 

+ I H  - H ' l , ( 4 ( . I s - s ' h  + (1 - . ) lS- / l : ) :  

+ ulH'13 + ( 1 -  u)lHI,)] (4.106) 

Again, this integrates in (4.101) to show that ~---> ~ f !  ~ 3 ~  C 2 is continu- 
ous for each f E C2. 

(b) (i) C(~2) Existence and Continuity of Derivatives. Existence is 
the content of Section 4.1. Their continuity as functions from ~ ]  into C(fa) 
for f E C(s follows directly from their representation as Ursell functions 
in (4.8) and (4.7) and part (a)(iii) of this theorem. 

(b)  (i i) C ~ Boundedness and Continuity of the Derivatives. I n  
this partial proof we restrict ourselves to the following cases: 

(i) O+~'f : q,, r e~ ~ a ,  f E C(fa) 

(ii) O.,, ~.~*f : q,, ~ ~ ~ 2 ,  f ~ C a 

(iii) O,,,,2~*f : *, t# E ~2~1, f ~ C(s 
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N o w  

O+ff~f = U~z(f,k) and O+,+~fj*f= u3q~(f,k , ,k:) (4.107) 

Hence (4.28), (4.29), and (4.30) follow directly from Lemma 4.7: (4.57), 
(4.58), and (4.60), respectively, and the relative Hamiltonian formulas 
(4.20), (4.21). Boundedness, given the pertinent locations of ~, f, t), etc., is 
assured (~tv~jDj, t( f)  < 2[/11, etc.). 

[Actually, given the remaining estimates in Lemma 4.7, we have more: 

O, ,~2,~f ~ C(s  for q',q~l ,+2 ,q'3 E ~1 and f E C(s  

0~,+2~j~f E C l for ~),~1 ,~2 E ~2 and f E C 1 (4.108) 

0 ~ * f ~ C  2 for q ~ , ~ 3  and f E C  2 

Indeed the number of derivatives does not determine the requirements on f 
and the interactions. This is borne out in the general case by b(ii) of 
Theorem 4.4. By contrast, the number of derivatives of T o will determine 
these requirements.] 

We turn now to continuity in ~ of the derivatives. Continuity from ~ l  
to C(s needs no further proof, since Ursell functions are automatically 
C(s continuous. 

Now, we saw in Section 2.5 that for qJ E ~N+ 1, k ,  E C N. Thus by the 
representation of derivatives of ~*f as Ursell functions as in (4.7), continuity 
from PN+I to C N follows from part (a)(iii) of this theorem. 

This concludes the partial proof. 

4.10. On the General Estimates and Completion of the Proofs of 
Proposition 4.3 and Theorem 4.4 

Let us first review the extent to which we have established Proposition 
4.3 and then state what we need in order to complete its proof. 

(i) Proof  of  Proposit ion 4.3. The basic inequality required is 
(4.86). Suppose we  can find some estimate 

[u~(h,k)l n < ~(q~,qr (4.109) 

independent of j ~ L, h E C(Xj), ]hloo = 1 and such that ~(q~,~',u) is a 
linear combination of ]H4 - Hr 1 < m < n + 1, with coefficients possi- 
bly involving ]Holm, ]H,~,[m, 1 ~< m < n + 1 and polynomials in u. Then we 
will have established Proposition 4.3. 

But this is quite straightforward given the formalism developed in 
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Section 4.6. Recalling (4.43), for A E V, and (s, s') ~ ~k, we have 

F(v) = u~o(h,k~), v = (va}o~ A 

where 

(4.110) 

f~ = ~] K(A, F)f  r (4.11 l) 
F c A  

f r (x)  --- f(xv~r) 

and similarly for kv. Note that h~ = h, as h does not depend upon spins 
outside j .  For F c A, let Qr run over (unordered) partitions of F. Then we 
claim that 

OAF(v ) = u~(h, OAkv) + • ~,u~%tQFl(h, OA_rk~, {Oefv }e~Qr ) (4.112) 
F c A  Qv 
F:~O 

This may be proved by induction, by first replacing A above with T C A 
(v = (Va)a~A) and using (4.10) [recall (4.47) and (4.48)]. 

Now we may generalize (4.76) above for the derivatives of v ~ k~ by 
defining, for F and F' disjoint subsets of A, 

kr r, r ~ ~ F' = k (xvs r,,x~sr,Ur ), I~n = O (4.113) 

Then we may write any derivatives as 

0rk ~ = ~ K ( A -  F,F')grr,, F c A  (4.114) 
F ' c A - F  

This may be proved (Ref. 23) by induction on F, using (4.40) and Proposi- 
tion 2.2(c). Thus we have, returning to (4.112), that 0Ak ~ = k A, whereas, 

0A-rk~= E K(r,r,)krA, - r  (4.115) 
FICF 

and 

(4.116) ~pf~= Z K ( A -  P, F2)f~ 
F z C A - P  

Applying these to (4.112) we have 

0AF(V ) = ufo(h, k A) 

rcA Qr r r K(F'F1) P E Q r r 2 c a - P  

• r' ( 2, p~O_r]] (4.117) 
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We may now estimate ~AF(V) by employing (4.32), which says here that 
(Dj(h) < 21h[~ o ~< 2) 

U~%[Qrl( h'kA'-F' ( fl{p2} PeQr) <~ 2t2+lorlDju(A-r>(k) Djup(f )  
P ~Qr 

(4.118) 

i.e., independently of F l and 1" 2. Since each of the square-bracketed terms 
in (4.117) involving K(. ,  .) is equal to unity as in (4.39), we have that 

DA(u2(h,k)) <<. DjuA(k ) + 2 E Et2+IQFIDjo(A-r)(k) I-[ Dj~p(f) 
F c A  Qr PEQr 
F ~ O  

< )t*'-*(j, A) 

+ 2 ~2 X*'-*(j ,A - I')~t2+IQFI H x"*'+(l-~)*(J, P )  
F c A  Qr PEQF 
Fv~O 

(4.119) 

where we have used (4.45), (4.75), and (4.20). Of course, if j ~ A then 
DA(U2(h,k)) = 0. Now we wish to sum over A E Vn, j ~ A to get an 
estimate as in (4.109). This is worked out in Ref. 25, pp. 106 and 107; here 
we present the result. A partition of the number N of length p is a collection 
~-(N) = (~1 . . . . .  ~p} of strictly positive integers such that N = ~]f= 1~i. We 
have then that (4.119) sums to 

lu2(h,k)[, <~ [H~ - H~0,[,+l 

[.-m+ 
+ 2  IH - H ,lm[ 

m = l  1 

1 

t2+p E 
~'-p( n re+l)  

] 
X 1"I IHnw+(l_u)w,[~+t [ (4.120) 

J 

Applying this to (4.86), we have proved Proposition 4.3. 

(ii) Proving Theorem 4.4. What remains to be done in the proof 
of the Theorem? In part (a), we need to prove continuity of q0 ~ ~ f :  ~N+l  

C N. In part (b), we have to establish (ii), which is a question of proving 
(4.27). For once we have that estimate, the nth derivative is in C u for 
% ~; ~ ~N+l-  The continuity result of part (a) then serves to complete the 
proof. 
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It is clear from Section 4.9 that what we need, in order to prove 
continuity and boundedness as above, is an estimate generalizing those of 
Lemma 4.7 and (4.120). Indeed, with the nth derivative of ~j replaced by 
the (n + 1)th Ursell function, (4.27) is one such estimate and may be found 
by a simple though tedious extension of the arguments in part (i) of this 
subsection (see Ref. 23, pp. 107-114). 

5. C O N T I N U O U S  DIFFERENTIABILITY OF THE GIBBS STATE 

In the following ~ N  is the Nth Dobrushin uniqueness region defined 
in Section 3.1, the spaces C N are defined in Section 2.5 and the ~ u  in 
Section 1. Note the relationship (4.19) between the nth relative Hamiltonian 
norm and the W, norm. 

5.1. Theorem 

Let q~ E ~ N  and o~(.) be the unique Gibbs state corresponding to ~. 
For each f E C N, the function q ,~  a , ( f )  : "~U --~ R 1 is N times continu- 
ously Gateaux differentiable in ~U+l  directions. That is, for each n with 
1 ~< n ~< N, and for each collection {+1}~=1, +i E ~ u + l ,  1 ~< i ~< n, 

~ n 

(0,, . . . . .  ~ )~ ( f )  - 0u, . . .  0u, ar ~ ~,~(f)[u, . . . . .  um= 0 (5.1) 

exists and is continuous o n  ~ N  �9 

Moreover, under these conditions, the expression (5.1) is bounded in 
absolute value by a polynomial in the variables 

IflM, aM(~), [HJM and [HolM, 

and 

I < ~ M ~ N  

1 , IH+iIN+,, and iH4,[N+, 
1 - ~ 1 ( ' ~ )  

where the H and [HIM are as in (4.10) and (4.12). 
The derivative is given by the convergent sum 

(0~ ...... ,~oo),(f) ---- O(,~,);a~,(f) 

(5.2) 
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where: the primed sum is over ordered partitions of the set { 1,2 . . . . .  n), 

OeTog = ~(+,),~ Tog (5.3) 

(whose existence and continuity is the content of Lemma 5.4), If] is the 
equivalence class modulo constants of f in C u, ( 1 -  To)-1 is the inverse of 
I - T o acting o n  ~ N  and is given by 

( 1 -  To)- '  [ f ]  = E [T~ ] (5.4) 
k=0 

and finally, where the primed product represents an ordered product: if 
Q, = (P, . . . . .  Pro) is an ordered partition, then 

I-[' (oero(I- To)-') 
P EQ. 

= ~  I -  v o ) - l ~  I -  ~ 0 - '  �9 �9 �9 ~ T o ( l -  Vo) -~ 

5,2. Bounds on the First and Second Derivatives 

In the cases N = 1,2, the expression (5.2) becomes 

O~%(f)=%(O,~T,.(I- T o ) - ] [ f ] )  = ~, %(Or o. T~) (5.5) 
k=0 

O+,,flo(f) = Oo(O+f o" ( I -  To)-" O+f o" ( I -  r o ) - ' [ / ] )  

+ ao(O+2ro" ( I -  r~,)-" o+ r~,(I- r o ) - ' [ f ] )  

= ( o o ( 0 : o  0 : o .  
l = 0 k = 0  

k=0 

(5.6) 

The second equality in each case will be seen to be true in the proof of 
Theorem 5.1. The series in (5.5) was provided by L, Gross, (3) who also 
showed that 

II~il,Ifll IO:o(f)l  < (5.7) [1 - a ] ( , ) ] 2  
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Here we shall also explicitly demonstrate that, with H i= n~i , i = 1,2, and 
a l = cq(r o/2 = a2(O), 

10~,~2%(f)1 

1 Inqllnzl,l fh 
< 2(1 -- al) 2 

+ (111~111~7 ~)2 { (1 -1 o/,) (IH2}2 + iH2lllHepi2)lfl, 

1 [ 2o/2 
+ ~ I H 2 1 1  21fl2 + (1 - - -  cq)2 Ifh 

2 
+o/2 1+ 1 -  o/-----~ 

I1~1111 ( + (f_-~), (Ia=12 + In2llla, l~)lfll + In~l, 

+ {same expression with ~Pl 6-~ ~P2 and HI<--> H 2 } 

_2_ [Iqqrl~tl~P2ll~lf/l+ Ilqqll~ 
< (1 - o/1) 2 (1 - o/l) 2 

4 2 x ~ (I]~p2[]2 + 21]~b2][l]lg,[[2)]f[,+ ~ Ibhll~(2lfl2 

2a2 ]f]l + a2(1 + 2 )]f]l + 2][4,2[[1]f[ 1 ] 
+ (1 ~"~1) 2 1 --0/1 

I1+,111 ( 
+ ( 1 7 7 ) 4  4(11~2112 + 2lJtP2J[1HdPl[z)[fJl 

+ 211q~211z o/2 1 + ~ Ifl~ + 2[f12 

o/2 

+ {same expression with ~1 ~ ~2} (5.8) 
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(where we have used the facts that ]H~/,] 1 ~ 211+11~ and [H~I 2 < 411+[12 [see 
(4.19)]). Indeed, the estimates of the following lemmas along with the series 
expansions for the deviatives provide us with a systematic procedure for 
estimating the size of any derivative of the Gibbs state. However, a 
notation appropriate to an arbitrary number of derivatives awaits full 
development. 

5.3. Lemma: The Boundedness and Continuity of T o 

For each k ~ [1, ~ )  andp  E [k, oo), the operator To,~,: is a contraction 
on C(~2) for q, ~ ~ l .  Also, ~ T o ~pf is continuous for each f E C(f~). 

Let N = 1,2 . . . . .  Then for ~ ~ -~N, T0,g,o is a bounded linear opera- 
tor on C N. Moreover, for e a c h f  ~ C N, the function 0---> To,~,pf: "~U --)" Cx 
is continuous. 

(See Theorem 3.2 for a bound on [To,kcflu and Remark 3.3(c) for the 
instances N = 1, 2, and 3.) 

ProoL The contractivity on C(~2) was shown in Section 1.2. For 
p < oo, e ~  Tr ~1 ~ C(~2) is continuous since To,kr is a finite product 
of q~-continuous operators (Section 4.1). But To,k,pf converges uniformly (in 
q,) to To,~,=f, in the space C(~2). Thus continuity is assured for eachp < ~ .  

Let now N /> 1. By Theorem 3.2, To,k, p is a bounded linear operator on 
C u. If p < oo, Theorem 4.4(a) assures us that ~pcf E C u for f E C u and 
~b ~ ~'~U C ~N+I  and moreover that q ,~pc f :  "~U "--) CN is continuous. 
Thus the same holds for ~7_1(~J) = To,p_l,pf. In other words, To,kr f is 
continuous into C u whenever p < ~ .  

If g is a continuous cylinder function, there is some q < oo such that 

= [ rO,k,qg if k < q 
g (5.9) 

g if k > q  

Hence in this case To,k,pg is continuous, for all p -<< oo, from ~N into C u. 
Let (gn} be a sequence of cylinder functions tending to f in C N, i.e., 
I f -  gnlM ---> 0 for 1 < M < N. Put 

{ 1 I ~ < M < N }  (5.10) B N =  q 'Cf fU+l  : al(ff) ~< randaM(O) < 1 -- r ' 

Then ~ N  = [,.Jr<lBr W- We see from (3.2) and its adjuncts (3.3), (3.4), and 
(3.6) that the bound given in the right-hand side of (3.2) is uniform in 0 for 
~, ~ Br N, r < 1. Moreover, it involves only those If] M for which 1 < M 
< N. Setp = ~ so that E p =--0. Then it is clear that ITr  To,k,~g,I M 
4 0  for each M <~ N, and uniformly in ~, E B~. Thus ~ To,k,~f: B,. N 

C N is continuous. Finally, let r1"l. 
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5.4. Lemma: Existence, Boundedness, and Continuity of 
Derivatives of T~ 

We will sometimes suppress the symbol q~ in the equations that follow. 

Then we have that 

~ ,  . . . . .  % T J =  ~ , '  TQ"f (5.17) 
Q,, 

where the primed sum is over all ordered partitions of (1 . . . . .  n }. 
(b) The derivatives in (5.12) also satisfy the following: if N is nonneg- 

ative, ~ , ~ - ~ N + , ,  ~1 (~ ~ N + n + l  and f E C N+", 0,~ . . . . . .  ,oTq, f lies in C N 
and, for f ixedf  and (~},  is continuous as a function of ~ from ~ N + ,  into 
C N . 

Also, write T = T1, ~,  T k = Tk, ~ . 
(a) If n is a natural number, ~, ~ -~n, q'i ~ ~ ,+1 (1 ~< i ~< n) and 

f E C n, the function 

(u I . . . . .  un)---> r , +  Xu,+f : Rn---> C(a)  (5.11) 
i 

possesses the nth mixed derivative 
0 n 

(0•, . . . . .  4~.T)of - 0Ul . . .  OU n ~ +  ~i uiq,iflu, . . . . .  u.=0 (5.12) 

Moreover, this derivative is, for fixed f and ( +i}, continuous as a function 
of q~ from ~ ,  into C n. 

In fact, we may describe the derivative by a C(a) convergent sum as 
follows: 

0+Tf-- ~ TIj_ 1 - ( 0 , ~ ) ( T j + , f )  (5.13) 
j = l  

O+,,+2Tf = ~ T , j _ ,  " (O, ,+~j)(Tj+, f )  
j=l  

-I- ~ 2 ( r l , j - l ' (~%~)[T j+ l , k - l (Oq ,2~k ) ( rk+l f ) ]  
j = l  k>j 

+ Tij_l(0,~fj)[ rj+l,k_l(0~l~k)(Tk+if )] )  (5.14) 

where, as usual, Tz, t_ 1 --= I. For the general case, let Q = {Pl . . . . .  P,} be 
some ordered partition of { 1,2 . . . . .  n }. Define 

~j~f= O(~i),E,~f'f, P C ( 1 , . . . ,  n} (5.15) 

. . . .  fe,T rQf  = ~,  ~ ~ rl , j ,-1 j, jt+l,j2-1 
L=s.L I<.L jl<j2 

�9 ~jP . . . .  Tj; ,+,,j,-1 . f j f 'T j .+, f  (5.16) 
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(c) The C u norm of the derivative is a polynomial in IflM (1 < M 
< N + n ) ,  in [H,~,I M (1 < M < N + n + I )  and in the variables 1/ [1--  
al(~)],aM(~) (1 < M ~< N + n). [Here C O= C(~).] 

We present the estimates needed for the second derivative of the Gibbs 
state: 

II~llllfll 
[3*T*fl~ < 1 - al(q, ) (5.18) 

1{ 
lO*T*fll ~< 1 - a1(r ) Ifll(lH*12 + ] H J , [ H ,  I2) 

+ln+ll[2'f'2 + a2( 1 +  ~ ) t f ' l ] }  (5.19) 

10<.<TJI  ~ < Io l l t lHZl l l f l , [1  - o. /1 ( r  .-I - [1 - o/1(1#)] -1  

( II~, l l , (Inala + IH211IH~.I2)IfI,( 1 - '~1)-' 

+ (1 - ~l)- l l lqqildH211 21/12+ ,~2 1 + 1 - ,~1(~) Ifl ,  

+ 211~,ll,ll~dilf[l 

+ the same terms with ~1 and 1~2 interchanged } (5.20) 

Proof. The organization of this proof is as follows: 
(i) Let N be a nonnegative integer. We show that the sum of the 

right-hand side of (5.17) lies in C u when ~ E-~U+n,  ~i ~ ~N+l+n and 
f ~ C u+". Moreover, its C n norm is bounded as in part (c) of the lemma. 
We also indicate the evaluation of the bounds in the right-hand side of 
(5.18)-(5.20). 

(ii) Next we informally derive the formulas (5.16) and (5.17) and then 
prove part (a) for the first derivative, i.e., n = 1. 

(iii) We prove the whole of part (a), including the continuity in q, for 
all n. The ~ continuity of part (b) will then follow directly from the 
discussion in (i) and the lemma will have been proved. 

(i) Let N > 0 and recall (3.2) of Theorem 3.2. This contains the 
annoying term Ee(f) ,  which we get rid of by noting that ~pE~(f)  = n(1 - 
a l ) [ f l .  -- [(1 - a 0 J I f l ] . ,  so that we may replace J l f l  + Ee(f)  in (3.2) by 
alJIf[. Collecting the estimates in (3.2) and (3.7) for k < p we see that we 
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have 

]T~,pflN < l fiN + (glf l)N, p >1 k (5.21) 

where K is zero on or above its diagonal and whose entries are polynomials 
in a 1 . . . . .  a N and 1/(1 - al). 

Now consider T O as in (5.16). By expressing the bounds on Tk, e as in 
(5.21), we place the burden of summability of TQf onto the ~e,. But they 
rise to the occasion, thanks to (4.27n) of Theorem 4.4. 

Assume the hypotheses of part (b) of this lemma. Then it follows that 
the summand in (5.16) lies in C N. For, recalling (4.27n), we have (in matrix 
terminology) that 

I~jPflM <~ ( C'~ M (5.22) 

where 

(L(J~(f))M= ~, DjuA(f) (5.23) 
A e  Vm_l 

j ~ A  

and C~,m is a polynomial in IH~il,, IHJ , ,  1 < l < M + 1, i ~ P. Now note 
that we may cast (3.30) of Lemma 3.10 in the form 

fj,p; m (g)  < [ ( o~ iJ -[- K1)I gl] m (5.24) 

where K~ is a matrix with zeroes on and above its diagonal. If we let 

g = expression to the right of ~j.f' in (5.16) (5.25) 

then we have 

2 [ summand~ < 2 [ ( I  + K)lfff,'gl]u 
jl <j2 jl  <j2 

< E [ ( I +  K)CP1L(J')(g)]N 
j l  <j2 

<~[(I + K)CP'Fj,,j2; .( g) ]N 

< [ ( I +  K)CeI(a, J +  K1)lgl]N (5.26) 

Iterating this procedure and noting that ~2 il P~] = n, it is clear that we have, 
under the hypotheses of part (b) of the current lemma, that the series for 
TQf is absolutely summable in the Nth seminorm. Thus the right-hand side 
of (5.16) is in C N itself. 

We omit here the evaluation of the estimates (5.18)-(5.20) [the compu- 
tation of (5.20) was simplified by setting Dk(. ) < 2]. ]~ at a convenient 
point]. 

(ii) Next we show that the sum (5.17) actually represents the deriva- 
tive. We do this by induction on the number of derivatives. That the 
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right-hand side of (5.17) is informally the derivative with respect to ~, of 
the (informal) derivative a,, . . . . .  , o _ T j  is simply a question of counting 
ordered partitions of [1,n] in terms of those of [1,n - 1], as in Section 4. 

Following Gross (3) let us show that (5.13) holds true, i.e., that the first 
C(f~) derivative exists (for ~ ~ ~1 ,  ~ ~ ~2 a n d f  ~ C1). We use a standard 
theorem on interchanging limits and differentiation. Let g be a cylinder 
function. Set A,( f )  = RHS (5.13). It is clear that A,(g) is a finite sum and 
is the derivative of T~g (which is a finite product of operators acting on g) 
by the product rule and the differentiability of the ~"s as in Section 4.1. 
Moreover, by Theorem 4.4, eO-->A,(g) is continuous from 21  into C(f~). 

Now suppose gk are cylinder functions converging to f in C(f~) and C 1 
norms. Fix q~ and r such that al(~) < r < 1. Recall that definition (5.10) of 
Br 1 . Br I is open by the continuity of a I so that there exists a 6 > 0 such that 

+ v~ E Br I whenever Iv] -<< 8 and such that A,+~g k converge to A~+~f 
in C(f~) norm, uniformly in v ~ [ - 8 , 8 ] .  This last fact follows from the 
estimate (5.18). 

Thus A , f  is indeed the derivative of Tq, f. Moreover, O-->O+T~,f is 
continuous on 21 .  To see this, note that by the bound on IA~,g]~ (in this 
case, [ 1 - a l(q0]- 11 g[lll @II0, I A,gn - A 4f] ~ converges to zero uniformly in 
q5 on Br 1, 0 < r < 1. Since the A~gn are continuous on Br 1, so is AJ .  

(iii) Now let n be a natural number, f ~ C ", q~ E ~ , ,  +~ E ~,+1 
for 1-<< i < n. Make the induction hypothesis that for some m < n, 
0~, . . . . .  ~ _ T j  exists, is bounded and continuous, and satisfies (5.17) (with 
n ~ m there). Let A~"~ = RHS (5.17) and let ( gk} be a sequence of cylinder 
functions tending to f in C(S2) and C" (and therefore in C m). Then A ~m-1)g k 
is a finite sum for each k. By Theorem 4.4 we have existence and 
continuity of the derivatives with respect to ~m of ~jeg, and continuity of 
T,,k,eg (again, note that continuity in ~1 implies continuity in ~m+0" By 
the finiteness of the sums involves, A(om)g k = O+A,g k. Again, a(m-t),,  ~,/, ,Sk 

--~A(,m-l)fin C(~2), uniformly in q~ ~ B~ for each r satisfying ~(4~) < r < 1, 
az(q~), %(+) < 1/(1 - r) and such that A (m) ,, --->A (m) s in C(~2), 

�9 �9 �9 , ~ + @ m d S k  @ + v ' t p m J  

uniformly in v (for suitably restricted v). Both of these facts follow from the 
estimations in (i) above [as expressed in part (c) of the lemma]. Thus we 
conclude that A~m)f is the mth derivative�9 Moreover, as in (i) above, 
[A(m)(g k - f ) [ ~  converges to zero uniformly in ~ for 0 ~  Bff and any 
r ~ (0, 1), so that continuity in ~ of the derivatives is assured. By the results 
of (ii) above, induction is complete and we have proved part (a) and once 
we have established the remaining portion of part (b) we will have proved 
the lemma. 

What remains is to show that the C(f~) derivatives are continuous from 
-@N+, into C N. Using cylinder functions as in the above arguments, for 
example, the estimates in part (c) [already derived in (i) above] justify this 
conclusion. 
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5.5. Derivatives of T o as Operators o n  C N 

Let ~r be the canonical map taking C N to ~N = CN/constants. ~U is a 
Banach space in the norm ~U=l l - IM"  An operator H on C u which 
annihilates constants is then uniquely identified with an o p e r a t o r / t  on  ~ N  
t h rough /4 .  ~r -- ~r �9 H. We will drop the tilde in what follows. In particular, 
if H:cN--~ C(~) annihilates constants, we can think of it as an operator 
from ~ X  to C(~) through (H[f])(s)= Hf(s). 

Since ~ v  is a Banach space we can define the notion of Gateaux 
derivatives of functions into cN and the question arises as to whether 
O~To(f), which annihilates constants, is in the ~ v  sense the derivative of 
some curve in ~u .  The obvious candidate for its antiderivative is u 

(To+,~ - To)[f ]. The question becomes: is 

N 
lim ~ 1 (To+,~f_ TJ)  - O+ T J  M = 0 (5.27) 
u--)0 M = 1 

for each f E C N, if O+Tof is the already defined C(~2) derivative? The 
answer is yes and may be seen as follows: 

Suppose ~ E -~N+I, ~ E 2~U+ 2 a n d f  E C N+l. Then for M < N, 

~_~1 foUdVlO+To+,~f_ OwTJI M (5.28) 

The first step uses the fundamental theorem of the calculus and the second 
uses Minkowski's inequality: the integrand is integrable by continuity as in 
Lemma 5.4(b). But by this continuity, we have that the limit as u ~ 0 is zero 
(use the other part of the fundamental theorem). 

similar result holds for the derivatives of ~of and we see that all the 
results on existence, boundedness, and continuity of derivatives continue to 
hold in the setting of ~u .  

5.6. Lemma. Existence and Continuity of ( I  - To)-=, and Its 
Derivatives, on C N 

=(a)(i If 0 ~ - ~ w ,  the operator I -  T,  on  ~ N  has a bounded inverse, 

So - To) -I .  For each fixed F E ~U;o_..~ SoF: "~U ---) ~U is continu- 
ous. We have in particular the bounds 

[fii 
IS+If]Ix < 1 - ~1(0) (5.29) 

[f12 
Is+[f]12 < 1 - a,(~,) (5.30) +0~2((~) [1 -- ~1(~) ]  3 
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(b) If ~ b ~ . ~ N + l ,  I ~ N +  2 and F E C  N+l, the function u +  
Sop+ u~F. - R l__) ~U is differentiable at u = 0, with derivative 

(~+S)oF = S o .(a~T)o. SoF (5.31) 

where ~ T  o is interpreted as an operator on ~N+l. [By part (a), 
a+ S 0 F :  -~N + 1 --~ C- U is continuous.] 

c~ k Proof. (a) Consider first the sum Y~=0[T7[ N. By (3.5) we have 

[Tfl<<.(atI+ g)[ f l ,  f ~ C  N, e~eDu (5.32) 

where the N • N matrix K is zero on and above its diagonal. It follows that 

2 [ Tkf[N ~ 1 1 g [/! k=0 ~ exp ~ N 

N--1 
_ l m~ = 1 m [Kmlfl] (5.33) 

1 a = o  ( 1  - a l )  N 

Since the entries of K are polynomials in (1 - al)-1,  a2 . . . . .  a N, the sum 
converges uniformly in ~ E B~,  0 < r < 1, so that it is continuous in ~ on 

-~N- 
Thus we may define S o = ( I -  To)-1 by 

Sol f] = ~ ~r(T~), ep E~. f~N,  f ~ CN (5.34) 
k=0  

as a linear, bounded, and continuous operator on ~N. 
When N = 1, K = 0 so that we have (5.29). When N -- 2, 

i 0 001 K = a___.__L_2 (5.35) 
1 - a 1 

so that we have (5.30). 
(b) Here we take direct advantage of the fact that the alleged 

derivatives in the right-hand side of (5.31) is already well defined and 
continuous. L e t f  E F so t h a t f  E C N+I and put 

s,(~) = ~ ~r(T~f) (5.36) 
k=o 

Then by part (a), ~ u  _ lim~oos~(~) = SoF. It suffices to show that (i) the 
~M derivatives (1 < g < N~ s~(~) = (d/du)s~(q~ + uq~)]n= 0 exist and are 
continuous from ~N+I  to cN; (ii) S'~(~) converge to S~,.3~To. SoF on 
-~U+l and for each r in (0,1), (s~(ff)}~,o is uniformly bounded for 
1 < n < oe and q~ E B N. For then, since v---~ So+ ~ �9 3~To+av �9 So+vq, F: R 1 

dN is continuous (for small v) by part (a) of this lemma and Lemma 5.4, 
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we have 

S++,+F- S+F= nlim [ s,( 0 + u+) - sn(q>)] 

�9 i ~ I t  # 

= n l i r a  J0 d,.,(+ + v+)  

= f0Udv S++v~ �9 3+T++~v �9 S++u+F (5.37) 

The second equality follows from the fundamental theorem and (i) above 
and third, by means of Lebesgue's dominated convergence theorem, from 
(ii). Finally, the continuity of the last integrand above and another applica- 
tion the fundamental theorem yield the result (5.31). 

(i) We have, from (5.36), 
k-1 ] ] Sn(~J"~ U~I)--gn(O) ~ [ x-~ rk -g- , [  T++.+- T+ IT~f  (5.38) 

= ++u+ t u U k=l 

For each summand, consider 

I . r k - j - i rT  _ T+)Tj+f_ T~-j-iO+T+ " TJfN 

k - j -  k - 7 -  1 + I (T<~+u+ '  - T~> )O+T+. T~flN (5.39) 

and consider its limit as u tends to zero. Now, in the last term, ~ T+. T~f 
C u (Lemmas 5.3 and 5.4). Moreover, T+ (and T~ - / -  l) is, as an operator 

on C N, strongly continuous for 0 E 2 N  (Lemma 5.3). Since the injection 
~,~N+ 1 "-)<~r N is itself continuous, T+ strongly continuous o n  -~N+I, SO that 
the last term tends to zero. 

Let r < 1, g~ E B N and g = T~f. Then g E C u+l and the second last 
term of (5.39) is majorized by 

N 
[C( r ) ]  Z 1--(T++.+g - T+g)-O+T+g M (5.40) 

M:I  U 

where C(r) < oo is independent of u (by the bounds on T+, Lemma 5.3). By 
the remarks of the last section (5.5), this goes to zero with u and we have 
that for each n, 

l~" �9 3+T+.  (5.41) 
j=0 

exists and is continuous from ~ u +  1 to ~N. The existence and continuity of 
these derivatives for the Mth norms, 1 < M < N, follows in the same 
manner. 
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(ii) We have from (5.41) that 

[S,~(q)lU < 2 2 I~r(T2"O~To" rS~f)lU (5.42) 
j~Om=0 

By (5.33) and Lemma 5.4 it is clear that IS'~(eO)lu is uniformly bounded for 
all n and all q~E B~,  for each r < 1. The same is true for Is;(~)[M, 
1 < M < N. Finally, it is clear that s~'(q0 converge to S o �9 O+T,. So[f] in 
C S and we are done. 

5.7. Proo! of Theorem 5.1 

We will use induction on the number of derivatives. We follow Re!. 3 
in establishing the theorem for the first derivative. L e t !  ~ C 1, ~ E -@1 and 

E ~2.  Vasershtein's formula says that 

% ( f )  = C O -  lira T~,f (5.43) 

where C O-- C(f~). By arguments similar to those used in proving Lemma 
5.6(b), it is clear that 

n--1 
(0~ T n )of = ~ T~. -J- 1 ~ To " T~f (5.44) 

j=0  

where now the derivatives are taken in the C O sense. Also, this derivative is 
continuous in ~ for ~ in -@1. Now I Zogl~ < Igloo and I Zjl ,  < a,(,~)l gl, for 
q~ E -C1, so that, using (5.18), 

[(~#T,)ofl ~ < ~ II~lldTSflm Ilq~ll,lfll (5.45) 
j=0 i - - - -~ l -~  ~< [1--am(q) ) ]2 

Thus the series in (5.44) is absolutely convergent. Put 

C.,j --- { o,T~'-J-mO*LTJf' j>nO < j < n - 1 (5.46) 

T n Then (0+ ) J =  ~j=oC.j. Since this series is absolutely convergent, uni- 
formly in n, and since by (5.43), lim.~o~C.,j = %0+ToT J f), we have 

nlimoo(O~T")of= ~ %(O+ToTSoU)=%(O~ToSo[f] ) (5,47) 
j=0  

where we have used the convergence of ~ TJ and the boundedness and 
linearity of % .  0r o on ~1. 

Now O---> 0r o �9 So[f] : -@~-~ C O is continuous. But so is $-->a,(g) : 
-@1 --> R * for each g E C(f~). We may see this from Vasershtein's proof of 
Dobrushin's uniqueness theorem (Ref. 23, Section 3.12), from which we 
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may extract the fact that for g E C ~, 

ITgg-  %(g)[oo < s u p ( T g g ) -  inf(T~g) < ITggl, < ~(q,) lgl ,  (5.48) 

so that the convergence of Tgg to %(g)  is uniform on each Br 1. T h u s  
~ %(g)  is continuous on ~ 1  for g in the C(~2)-dense set C 1 and hence it 

is continuous for all g in C(f~). 
But this means that 0 ~  %(O,T~,'So[f]) is continuous from 2 1  into 

the reals. We may now use the fundamental theorem of the calculus and 
the dominated convergence theorem to see that, for u small enough, 

%+.~(f) - %(f) = lim (Udv (O~T" 
" ->~  Jo ) * + ~ ( f )  

" T = fo dv%+~(O, ~,+,~" S,+v~[ f l )  (5.49) 

By the continuity of the integrand, we have again from the fundamental 
theorem that %( f )  is indeed differentiable, with the expected derivative. 
Note that (5.5) is fully justified. 

Now proceed with the induction hypothesis that the theorem is true for 
some N. Let + E -~N+I, 1~ ~ ~N+2 a n d f  E C N+I. By hypothesis, the Nth 
derivative in directions 61 . . . . .  I~N exists, is continuous, and is given by 
(5.2) with n = N (we consider the q~i to lie in ~N+2)- (5.2) is of the form 

0[r = ~ '  or N ) (5.50) 
ON 

where, with Q an ordered partition of { 1 , . . . ,  N }, 

fQ(e~) = T[(ep)T~(#O)... T,~(O)[f], m -- I Ol (5.51) 

Ti'(q~)G = (O{,~j}j~T)q. S~,G (G in some 6 ~ ) (5.52) 

Thus we have that 

1 [/q(q, + u~) - / q  (q,)] 
u 

= 1 ~ r [ ( +  + u6)  �9 �9 �9 T,.'_,(,# + u6 ) [  T[(,# + u6)  - T,'(,#)] 
/'/ i=1 

• T,'+~(~,) �9 �9 �9 Tin' (q,)[f] (5.53) 

(with suitable adjustments for i = 1, m). 
From Lemmas 5.4 and 5.6 and Remark 5.5 we have that 

7"[ (~) : d N+'-xT='+'Ie/~ dN+,-E;=,l~l (5.54) 

boundedly, i + 1 < l < m; 

1 [ T/'(d? + u~) -- T[ (qO]Ti '+l (~) . . .  T~,(q,)[fl (5.55) u 
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has the limit 

(0r �9 T,'+,((~) �9 �9 �9 T ' (0)  I f ]  on ~U-XT=,lP/ 
(5.56) 

T:(q, + uq~) : ~zv-s (N-XTh,51 

boundedly and is continuous at u = 0. Hence we may let u---> 0 in (5.53) to 
obtain the result that the C(~2) derivative of fp exists and is given by 

O+fQ(O) = k T{(eo)''' T:-l(e~)'(O,T;)(e~)T;+,(q')''' Z'(q')[fl (5.57) 
i=l 

Also, note that, by similar arguments 

O,T,:(q)G = O((~}j~p)u{,}T~,. SoG + O(~}:,T,. S O �9 O,T~,. S,G (5.58) 

from (5.31). Now 

%+.,[ fQ(e~ - u,)] -- %[ fQ (q')] = (%+.~[ fQ(q~)] -- %[ Q(+)I) 
+ + uq. )  - 

(5.59) 

In the last term, % + u+(" ) is continuous in u [since q~---> %(g) is continuous 
on ~1  for each g E C(f~), it is also so on -~N+ 1]- Hence we conclude, using 
(5.50), (5.57), and (5.58) that the (N + 1)th derivative exists and equals the 
right-hand side of (5.2) with n = N + 1, qJ = +N+ l" Continuity in q~ follows 
from that of the various constituents, and our induction is complete. The 
boundedness remarks in the second paragraph of Section 5.1 follow from 
Lemmas 5.4 and 5.6 and the proof of the theorem is complete. 

The bound (5.8) is obtained by applying (5.18), (5.19), (5.20), (5.29), 
and (5.30) to (5.6). 

5.8. Corollary: DifferenUability of the Pressure 

Let L = Z ~. If N > 2, the pressure is N times continuously Gateaux 
differentiable in ~N directions on -~N-1 (the caret denoting translational 
invariance). The Nth derivative at ~ E-~N-1  in the ~N directions ~bl, 
. . . .  q~N is bounded in absolute value by a polynomial in 

1 , OtM(d?) (1 < M < N - 1); IIq~ullM (1 ,< M < N - 1) 
1 - al( ) 

In~,lm (1 < M < N);  and IH,,IM (1 < M < N, 1 < i < N -  1) 

The Nth derivative of the pressure may be expressed as the series (5.2) with 
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n = N - 1 and f = A,~ there, where, with 0 the origin of L, 

A~ = - ~, IAI-1p(. [A) (5.60) 
A c L  
0~A 

Proof. We mentioned in Section 1.1 that on 5~ 1 the pressure P is 
continuously Gateaux differentiable in ~2 directions q~, with 

0~e( f f )  = %(A,~) (5 .6 l )  

The corollary follows from Theorem 5.1 upon observing that, as in Section 
2.5, A~ ~ C M for ~ E PM" 

We have, for the first derivative, from (5.61) that 

]0~P(q')l < II~][, (5.62) 

The second and third derivatives may also be estimated by means of (5.7), 
(5.8), (5.61), and (2.21). For N = 2, for example, we have Gross' result that 

2ll~lllll~lll 
law'w'P(e )l (1 - 2 (5.63) 

For N = 3 we may use (5.8): here IA~I2 < 211q~112. 
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